41 research outputs found

    C-terminal extensions of ku70 and ku80 differentially influence dna end binding properties

    Get PDF
    The Ku70/80 heterodimer binds to DNA ends and attracts other proteins involved in the non-homologous end-joining (NHEJ) pathway of DNA double-strand break repair. We developed a novel assay to measure DNA binding and release kinetics using differences in Förster resonance

    Human exonuclease 1 (EXO1) activity characterization and its function on flap structures

    No full text
    Synopsis Human exonuclease 1 (EXO1) is involved in multiple DNA metabolism processes, including DNA repair and replication. Most of the fundamental roles of EXO1 have been described in yeast. Here, we report a biochemical characterization of human full-length EXO1. Prior to assay EXO1 on different DNA flap structures, we determined factors essential for the thermodynamic stability of EXO1. We show that enzymatic activity and stability of EXO1 on DNA is modulated by temperature. By characterization of EXO1 flap activity using various DNA flap substrates, we show that EXO1 has a strong capacity for degrading double stranded DNA and has a modest endonuclease or 5 flap activity. Furthermore, we report novel mechanistic insights into the processing of flap structures, showing that EXO1 preferentially cleaves one nucleotide inwards in a double stranded region of a forked and nicked DNA flap substrates, suggesting a possible role of EXO1 in strand displacement

    Human exonuclease 1 (EXO1) activity characterization and its function on FLAP structures

    No full text
    Human exonuclease 1 (EXO1) is involved in multiple DNA metabolism processes, including DNA repair and replication. Most of the fundamental roles of EXO1 have been described in yeast. Here, we report a biochemical characterization of human full-length EXO1. Prior to assay EXO1 on different DNA flap structures, we determined factors essential for the thermodynamic stability of EXO1. We show that enzymatic activity and stability of EXO1 on DNA is modulated by temperature. By characterization of EXO1 flap activity using various DNA flap substrates, we show that EXO1 has a strong capacity for degrading double stranded DNA and has a modest endonuclease or 5′ flap activity. Furthermore, we report novel mechanistic insights into the processing of flap structures, showing that EXO1 preferentially cleaves one nucleotide inwards in a double stranded region of a forked and nicked DNA flap substrates, suggesting a possible role of EXO1 in strand displacement

    Automated reconciliation of radiology reports and discharge summaries

    No full text
    We study machine learning techniques to automatically identify limb abnormalities (including fractures, dislocations and foreign bodies) from radiology reports. For patients presenting to the Emergency Room (ER) with suspected limb abnormalities (e.g., fractures) there is often a multi-day delay before the radiology report is available to ER staff, by which time the patient may have been discharged home with the possibility of undiagnosed fractures. ER staff, currently, have to manually review and reconcile radiology reports with the ER discharge diagnosis; this is a laborious and error-prone manual process. Using radiology reports from three different hospitals, we show that extracting detailed features from the reports to train Support Vector Machines can effectively automate the identification of limb fractures, dislocations and foreign bodies. These can be automatically reconciled with a patient’s discharge diagnosis from the ER to identify a number of cases where limb abnormalities went undiagnosed

    The role of RecQ helicases in non-homologous end-joining

    No full text
    DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not efficiently repaired. RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in several DNA repair pathways, including DNA double-strand break repair. Double-strand breaks can be repaired by homologous recombination (HR) using sister chromatids as templates to facilitate precise DNA repair, or by an HR-independent mechanism known as non-homologous end-joining (NHEJ) (error-prone). NHEJ is a non-templated DNA repair process, in which DNA termini are directly ligated. Canonical NHEJ requires DNA-PKcs and Ku70/80, while alternative NHEJ pathways are DNA-PKcs and Ku70/80 independent. This review discusses the role of RecQ helicases in NHEJ, alternative (or back-up) NHEJ (B-NHEJ) and microhomology-mediated end-joining (MMEJ) in V(D)J recombination, class switch recombination and telomere maintenance
    corecore