16 research outputs found

    Questionnaire results of user experiences with wearable exoskeletons and their preferences for sensory feedback

    Get PDF
    BACKGROUND: Wearable exoskeletons can be a powerful tool for the facilitation of ambulation of complete Spinal Cord Injury (SCI) subjects, which has several psychological and physical advantages. However, exoskeleton control is difficult for this group of users and requires a long period of training. People with SCI not only lack the motor control, but also miss the sensory information from below the level of the lesion, which is for example very important in their perception of body posture and makes balancing with an exoskeleton difficult. It is hypothesized that through sensory substitution part of the missing sensory information can be provided and might thereby improve the control of an exoskeleton. However, it is not known which information would be most important to receive while using an exoskeleton and how this feedback should be provided.METHODS: To investigate the preferences of users of an exoskeleton, a questionnaire was filled out by 10 SCI subjects who underwent a training program with a commercial exoskeleton (ReWalk). The questionnaire consisted of questions about the use of the exoskeleton to identify which information is missing and which instructions from the therapists were needed to be able to control the exoskeleton. The second part of the questionnaire focused on the possibilities of sensory feedback and preferences for stimulation methods (auditory, vibrotactile or visual) and feedback timing (discrete or continuous) were investigated. Furthermore, six options for feedback parameters (step initiation, continuous and discrete gait phases, foot position and mediolateral and anteroposterior weight shift) were proposed and the respondents were asked to indicate their preferences.RESULTS: Three feedback parameters (feedback about mediolateral and anteroposterior weight shift and feedback about step initiation) were considered as possibly helpful by the respondents. Furthermore, there were slight preferences for the use of vibrotactile (over auditory and visual) and discrete (over continuous) feedback.CONCLUSIONS: The answers of the respondents on the optimal feedback parameters were rather variable and therefore it is recommended to let the users choose their preferred feedback system during a training session with several feedback options. However, there are slight preferences for the use of vibrotactile stimulation provided in a discrete way.</p

    Impaired foot placement strategy during walking in people with incomplete spinal cord injury

    Get PDF
    BACKGROUND: Impaired balance during walking is a common problem in people with incomplete spinal cord injury (iSCI). To improve walking capacity, it is crucial to characterize balance control and how it is affected in this population. The foot placement strategy, a dominant mechanism to maintain balance in the mediolateral (ML) direction during walking, can be affected in people with iSCI due to impaired sensorimotor control. This study aimed to determine if the ML foot placement strategy is impaired in people with iSCI compared to healthy controls. METHODS: People with iSCI (n = 28) and healthy controls (n = 19) performed a two-minute walk test at a self-paced walking speed on an instrumented treadmill. Healthy controls performed one extra test at a fixed speed set at 50% of their preferred speed. To study the foot placement strategy of a participant, linear regression was used to predict the ML foot placement based on the ML center of mass position and velocity. The accuracy of the foot placement strategy was evaluated by the root mean square error between the predicted and actual foot placements and was referred to as foot placement deviation. Independent t-tests were performed to compare foot placement deviation of people with iSCI versus healthy controls walking at two different walking speeds. RESULTS: Foot placement deviation was significantly higher in people with iSCI compared to healthy controls independent of walking speed. Participants with iSCI walking in the self-paced condition exhibited 0.40 cm (51%) and 0.33 cm (38%) higher foot placement deviation compared to healthy controls walking in the self-paced and the fixed-speed 50% condition, respectively. CONCLUSIONS: Higher foot placement deviation in people with iSCI indicates an impaired ML foot placement strategy in individuals with iSCI compared to healthy controls

    Plant Genotype and Fungal Strain Harmonization Improves Miscanthus sinensis Conversion by the White-Rot Fungus Ceriporiopsis subvermispora

    No full text
    Fungal pretreatment of plant biomass is often assessed by using single plant genotypes and single fungal strains, but can the process be improved by harmonizing both, thus selecting specific substrate-fungus combinations? To tackle this question, we treated four Miscanthus sinensis genotypes with four Ceriporiopsis subvermispora strains and thoroughly analyzed substrates and treated residues. The M. sinensis genotypes differed in cellulose, hemicellulose, and lignin contents and lignin-wise diverged in subunit and linkage composition and the incorporation of hydroxycinnamic acids and tricin. Independently of the M. sinensis genotype used, C. subvermispora strain MES13904 outperformed the other three strains in extent and selectivity of delignification and consistently generated the highest enzymatic residual carbohydrate conversion and structural changes in the residual lignin. The “best” substrate-fungus combination gave 63% w/w delignification and a total enzymatic glucose yield of 66% w/w, while the “worst” combination led to 3% w/w lignin removal only and negligible glucose yield improvement. Our study highlights that white-rot fungal treatment of plant biomass is driven by both compositional and structural features of the substrate as well as the genetic makeup of the fungal strain used. These insights contribute to expediting the biological valorization of lignocellulose and ultimately to enabling more controlled fungal pretreatments

    Examining the role of intrinsic and reflexive contributions to ankle joint hyper-resistance treated with botulinum toxin-A

    Get PDF
    Background: Spasticity, i.e. stretch hyperreflexia, increases joint resistance similar to symptoms like hypertonia and contractures. Botulinum neurotoxin-A (BoNT-A) injections are a widely used intervention to reduce spasticity. BoNT-A effects on spasticity are poorly understood, because clinical measures, e.g. modified Ashworth scale (MAS), cannot differentiate between the symptoms affecting joint resistance. This paper distinguishes the contributions of the reflexive and intrinsic pathways to ankle joint hyper-resistance for participants treated with BoNT-A injections. We hypothesized that the overall joint resistance and reflexive contribution decrease 6 weeks after injection, while returning close to baseline after 12 weeks. Methods: Nine participants with spasticity after spinal cord injury or after stroke were evaluated across three sessions: 0, 6 and 12 weeks after BoNT-A injection in the calf muscles. Evaluation included clinical measures (MAS, Tardieu Scale) and motorized instrumented assessment using the instrumented spasticity test (SPAT) and parallel-cascade (PC) system identification. Assessments included measures for: (1) overall resistance from MAS and fast velocity SPAT; (2) reflexive resistance contribution from Tardieu Scale, difference between fast and slow velocity SPAT and PC reflexive gain; and (3) intrinsic resistance contribution from slow velocity SPAT and PC intrinsic stiffness/damping. Results: Individually, the hypothesized BoNT-A effect, the combination of a reduced resistance (week 6) and return towards baseline (week 12), was observed in the MAS (5 participants), fast velocity SPAT (2 participants), Tardieu Scale (2 participants), SPAT (1 participant) and reflexive gain (4 participants). On group-level, the hypothesis was only confirmed for the MAS, which showed a significant resistance reduction at week 6. All instrumented measures were strongly correlated when quantifying the same resistance contribution. Conclusion: At group-level, the expected joint resistance reduction due to BoNT-A injections was only observed in the MAS (overall resistance). This observed reduction could not be attributed to an unambiguous group-level reduction of the reflexive resistance contribution, as no instrumented measure confirmed the hypothesis. Validity of the instrumented measures was supported through a strong association between different assessment methods. Therefore, further quantification of the individual contributions to joint resistance changes using instrumented measures across a large sample size are essential to understand the heterogeneous response to BoNT-A injections.</p

    Examining the role of intrinsic and reflexive contributions to ankle joint hyper-resistance treated with botulinum toxin-A

    No full text
    Background: Spasticity, i.e. stretch hyperreflexia, increases joint resistance similar to symptoms like hypertonia and contractures. Botulinum neurotoxin-A (BoNT-A) injections are a widely used intervention to reduce spasticity. BoNT-A effects on spasticity are poorly understood, because clinical measures, e.g. modified Ashworth scale (MAS), cannot differentiate between the symptoms affecting joint resistance. This paper distinguishes the contributions of the reflexive and intrinsic pathways to ankle joint hyper-resistance for participants treated with BoNT-A injections. We hypothesized that the overall joint resistance and reflexive contribution decrease 6 weeks after injection, while returning close to baseline after 12 weeks. Methods: Nine participants with spasticity after spinal cord injury or after stroke were evaluated across three sessions: 0, 6 and 12 weeks after BoNT-A injection in the calf muscles. Evaluation included clinical measures (MAS, Tardieu Scale) and motorized instrumented assessment using the instrumented spasticity test (SPAT) and parallel-cascade (PC) system identification. Assessments included measures for: (1) overall resistance from MAS and fast velocity SPAT; (2) reflexive resistance contribution from Tardieu Scale, difference between fast and slow velocity SPAT and PC reflexive gain; and (3) intrinsic resistance contribution from slow velocity SPAT and PC intrinsic stiffness/damping. Results: Individually, the hypothesized BoNT-A effect, the combination of a reduced resistance (week 6) and return towards baseline (week 12), was observed in the MAS (5 participants), fast velocity SPAT (2 participants), Tardieu Scale (2 participants), SPAT (1 participant) and reflexive gain (4 participants). On group-level, the hypothesis was only confirmed for the MAS, which showed a significant resistance reduction at week 6. All instrumented measures were strongly correlated when quantifying the same resistance contribution. Conclusion: At group-level, the expected joint resistance reduction due to BoNT-A injections was only observed in the MAS (overall resistance). This observed reduction could not be attributed to an unambiguous group-level reduction of the reflexive resistance contribution, as no instrumented measure confirmed the hypothesis. Validity of the instrumented measures was supported through a strong association between different assessment methods. Therefore, further quantification of the individual contributions to joint resistance changes using instrumented measures across a large sample size are essential to understand the heterogeneous response to BoNT-A injections
    corecore