122 research outputs found

    Nearby supernova host galaxies from the CALIFA Survey: II. SN environmental metallicity

    Get PDF
    The metallicity of a supernova (SN) progenitor, together with its mass, is one of the main parameters that rules their outcome. We present a metallicity study of 115 nearby SN host galaxies (0.005<z<0.03) which hosted 142 SNe using Integral Field Spectroscopy (IFS) from the CALIFA survey. Using O3N2 we found no statistically significant differences between the gas-phase metallicities at the locations of the three main SN types (Ia, Ib/c and II) all having ~8.50±\pm0.02 dex. The total galaxy metallicities are also very similar and we argue that this is because our sample consists only of SNe discovered in massive galaxies (log(M/Msun)>10 dex) by targeted searches. We also found no evidence that the metallicity at the SN location differs from the average metallicity at the GCD of the SNe. By extending our SN sample with published metallicities at the SN location, we studied the metallicity distributions for all SN subtypes split into SN discovered in targeted and untargeted searches. We confirm a bias toward higher host masses and metallicities in the targeted searches. Combining data from targeted and untargeted searches we found a sequence from higher to lower local metallicity: SN Ia, Ic, and II show the highest metallicity, which is significantly higher than SN Ib, IIb, and Ic-BL. Our results support the picture of SN Ib resulting from binary progenitors and, at least part of, SN Ic being the result of single massive stars stripped of their outer layers by metallicity driven winds. We studied several proxies of the local metallicity frequently used in the literature and found that the total host metallicity allows for the estimation of the metallicity at the SN location with an accuracy better than 0.08 dex and very small bias. In addition, weak AGNs not seen in total spectra may only weakly bias (by 0.04 dex) the metallicity estimate from integrated spectra. (abridged)Comment: 24 pages, 16 Figures, 13 Tables, Accepted in A&

    Aperture effects on the oxygen abundance determinations from CALIFA data

    Full text link
    This paper aims at providing aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([OIII]5007/Hbeta)/([NII]6583/Halpha) (O3N2) and log[NII]6583/Halpha (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star forming galaxies. We compute median growth curves of Halpha, Halpha/Hbeta, O3N2 and N2 up to 2.5R_50 and 1.5 disk R_eff. The growth curves simulate the effect of observing galaxies through apertures of varying radii. The median growth curve of the Halpha/Hbeta ratio monotonically decreases from the center towards larger radii, showing for small apertures a maximum value of ~10% larger than the integrated one. The median growth curve of N2 shows a similar behavior, decreasing from the center towards larger radii. No strong dependence is seen with the inclination, morphological type and stellar mass for these growth curves. Finally, the median growth curve of O3N2 increases monotonically with radius. However, at small radii it shows systematically higher values for galaxies of earlier morphological types and for high stellar mass galaxies. Applying our aperture corrections to a sample of galaxies from the SDSS survey at 0.02<=z<=0.3 shows that the average difference between fiber-based and aperture corrected oxygen abundances, for different galaxy stellar mass and redshift ranges, reaches typically to ~11%, depending on the abundance calibration used. This average difference is found to be systematically biased, though still within the typical uncertainties of oxygen abundances derived from empirical calibrations. Caution must be exercised when using observations of galaxies for small radii (e.g. below 0.5R_eff) given the high dispersion shown around the median growth curves.Comment: Accepted for publication in Ap

    Integral Field Spectroscopy of Blue Compact Dwarf Galaxies

    Full text link
    We present results on integral-field optical spectroscopy of five luminous Blue Compact Dwarf galaxies. The data were obtained using the fiber system INTEGRAL attached at the William Herschel telescope. The galaxies Mrk 370, Mrk 35, Mrk 297, Mrk 314 and III Zw 102 were observed. The central 33"x29" regions of the galaxies were mapped with a spatial resolution of 2"/spaxel, except for Mrk 314, in which we observed the central 16"x12" region with a resolution of 0.9"/spaxel$. We use high-resolution optical images to isolate the star-forming knots in the objects; line ratios, electron densities and oxygen abundances in each of these regions are computed. We build continuum and emission-line intensity maps as well as maps of the most relevant line ratios: [OIII]5007\Hb, [NII]6584\Ha, and Ha\Hb, which allow us to obtain spatial information on the ionization structure and mechanisms. We also derive the gas velocity field from the Ha and [OIII]5007 emission lines. We find that all the five galaxies are in the high end of the metallicity range of Blue Compact Dwarf galaxies, with oxygen abundances varying from Z\sun~0.3 to Z\sun~1.5. The objects show HII-like ionization in the whole field of view, except the outer regions of IIIZw102 whose large [NII]6584/Ha values suggest the presence of shocks. The five galaxies display inhomogeneous extinction patterns, and three of them have high Ha/Hb ratios, indicative of a large dust content; all galaxies display complex, irregular velocity fields in their inner regions.Comment: 26 pages, 14 figures, 5 tables. Accepted for publication in the Ap

    Tracing kinematic (mis)alignments in CALIFA merging galaxies: Stellar and ionized gas kinematic orientations at every merger stage

    Get PDF
    We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. We compare our sample with 80 non-interacting galaxies. We measure for the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin_{\mathrm{kin}}, approaching and receding) directly from the velocity fields with no assumptions on the internal motions. This method allow us to derive the deviations of the kinematic PAs from a straight line (δ\deltaPAkin_{\mathrm{kin}}). Around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. Those misalignments are present mostly in galaxies with morphological signatures of interaction. Alignment between the kinematic sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA from a straight line in the stellar component measured by δ\deltaPAkin_{\mathrm{kin}} are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δ\deltaPAkin_{\mathrm{kin}} is larger than typical values derived from isolated galaxies (48%), making this parameter a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16 degrees, compared to 10% from the control sample. Our results show the impact of interactions in the internal structure of galaxies as well as the wide variety of their velocity distributions. This study also provides a local Universe benchmark for kinematic studies in merging galaxies at high redshift.Comment: 24 pages,11 Figures, Accepted for publication in Astronomy & Astrophysics. The entire set of stellar and ionized gas velocity fields of the interacting/merging sample will be available in the electronic version of the journa

    Outlying HII Regions in HI-Selected Galaxies

    Get PDF
    We present results from the first systematic search for outlying HII regions, as part of a sample of 96 emission-line point sources (referred to as ELdots - emission-line dots) derived from the NOAO Survey for Ionization in Neutral Gas Galaxies (SINGG). Our automated ELdot-finder searches SINGG narrow-band and continuum images for high equivalent width point sources outside the optical radius of the target galaxy (> 2 X r25 in the R-band). Follow-up longslit spectroscopy and deep GALEX images (exposure time > 1000 s) distinguish outlying HII regions from background galaxies whose strong emission lines ([OIII], Hbeta or [OII]) have been redshifted into the SINGG bandpass. We find that these deep GALEX images can serve as a substitute for spectroscopic follow-up because outlying HII regions separate cleanly from background galaxies in color-color space. We identify seven SINGG systems with outlying massive star formation that span a large range in Halpha luminosities corresponding to a few O stars in the most nearby cases, and unresolved dwarf satellite companion galaxies in the most distant cases. Six of these seven systems feature galaxies with nearby companions or interacting galaxies. Furthermore, our results indicate that some outlying HII regions are linked to the extended-UV disks discovered by GALEX, representing emission from the most massive O stars among a more abundant population of lower mass (or older) star clusters. The overall frequency of outlying HII regions in this sample of gas-rich galaxies is 8 - 11% when we correct for background emission-line galaxy contamination (~75% of ELdots).Comment: 20 pages, 14 Figures, Accepted by A

    The Mass-Metallicity relation explored with CALIFA: I. Is there a dependence on the star formation rate?

    Full text link
    We present the results on the study of the global and local M-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2-3 effective radii), with enough resolution to separate individual HII regions and/or aggregations. Nearly \sim3000 individual HII regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise to derive the oxygen abundance and star-formation rate associated with each region. In addition, we have computed the integrated and spatially resolved stellar masses (and surface densities), based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion smaller than the one already reported in the literature (σΔlog(O/H)=\sigma_{\Delta{\rm log(O/H)}}=0.07 dex). Indeed, this dispersion is only slightly larger than the typical error derived for our oxygen abundances. However, we do not find any secondary relation with the star-formation rate, other than the one induced due to the primary relation of this quantity with the stellar mass. We confirm the result using the \sim3000 individual HII regions, for the corresponding local relations. Our results agree with the scenario in which gas recycling in galaxies, both locally and globally, is much faster than other typical timescales, like that of gas accretion by inflow and/or metal loss due to outflows. In essence, late-type/disk dominated galaxies seem to be in a quasi-steady situation, with a behavior similar to the one expected from an instantaneous recycling/closed-box model.Comment: 19 Pages, 8 figures, Accepted for Publishing in Astronomy and Astrophysics (A&A

    CALIFA : a diameter-selected sample for an integral field spectroscopy galaxy survey

    Get PDF
    JMA acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild).We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45 '' and 79 : 2 '' and with a redshift 0 : 005 M-r > -23 : 1 and over a stellar mass range between 10(9.7) and 10(11.4) M-circle dot. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of M-r = -19 (or stellar masses <10(9.7) M-circle dot) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies, finding that the sample covers environmental conditions from the field to genuine clusters. We finally consider the expected incidence of active galactic nuclei among CALIFA galaxies given the existing pre-CALIFA data, finding that the final observed CALIFA sample will contain approximately 30 Sey2 galaxies.Peer reviewe

    Star forming dwarf galaxies

    Full text link
    Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon, September 2010, Springer Verlag, in pres
    corecore