5,572 research outputs found

    Nematicity as a route to a magnetic field-induced spin density wave order; application to the high temperature cuprates

    Full text link
    The electronic nematic order characterized by broken rotational symmetry has been suggested to play an important role in the phase diagram of the high temperature cuprates. We study the interplay between the electronic nematic order and a spin density wave order in the presence of a magnetic field. We show that a cooperation of the nematicity and the magnetic field induces a finite coupling between the spin density wave and spin-triplet staggered flux orders. As a consequence of such a coupling, the magnon gap decreases as the magnetic field increases, and it eventually condenses beyond a critical magnetic field leading to a field-induced spin density wave order. Both commensurate and incommensurate orders are studied, and the experimental implications of our findings are discussed.Comment: 5 pages, 3 figure

    Collective modes and sound propagation in a p-wave superconductor: Sr2_2RuO4_4

    Full text link
    There are five distinct collective modes in the recently discovered p-wave superconductor Sr2_2RuO4_4; phase and amplitude modes of the order parameter, clapping mode (real and imaginary), and spin wave. The first two modes also exist in the ordinary s-wave superconductors, while the clapping mode with the energy 2Δ(T)\sqrt{2} \Delta(T) is unique to Sr2_2RuO4_4 and couples to the sound wave. Here we report a theoretical study of the sound propagation in a two dimensional p-wave superconductor. We identified the clapping mode and study its effects on the longitudinal and transverse sound velocities in the superconducting state. In contrast to the case of 3^3He, there is no resonance absorption associated with the collective mode, since in metals ω/(vFq)1\omega/(v_F |{\bf q}|) \ll 1, where vFv_F is the Fermi velocity, {\bf q} is the wave vector, and ω\omega is the frequency of the sound wave. However, the velocity change in the collisionless limit gets modified by the contribution from the coupling to the clapping mode. We compute this contribution and comment on the visibility of the effect. In the diffusive limit, the contribution from the collective mode turns out to be negligible. The behaviors of the sound velocity change and the attenuation coefficient near TcT_c in the diffusive limit are calculated and compared with the existing experimental data wherever it is possible. We also present the results for the attenuation coefficients in both of the collisionless and diffusive limits at finite temperatures.Comment: RevTex, 12 pages, 2 figures, Replaced by the published versio

    The Use of Colorful Semantics to Improve Sentence Construction in Writing Sentences Among Year Four Pupils

    Get PDF
    This action research was set out to develop pupils' writing skill using colorful semantics. The main two objectives established from the outset were to develop pupils' sentence construction and improve my teaching practice in sentence construction teaching respectively. As the researcher, I conducted this classroom action research to 31 pupils which comprised 17 males and 14 females of Year 4J of SJK(C) Cheng Siu 2 in Malaysia. The data was gathered through pre- writing test and post- writing test, pupils' work as well as teacher's reflective journal. Over the course of four weeks, I introduced colorful semantics to my pupils in accordance to the sequence of ‘who', ‘what doing', ‘what' and ‘where'. As can be induced from the findings, colorful semantics was statistically significant to pupils' sentence construction through the enhancement of pupils' ability to understand words of each sentence part and also to write sentence in the correct order. The findings also depicted that utilization of colorful semantics improved my teaching practice to become a reflective, passionate, and motivational teacher. Therefore, the positive results warrant further research into colorful semantics with suggestions to integrate Information, Communication, and Technology (ICT) into lessons and expose pupils to more sentence types

    Half quantum vortex in superfluid 3^3He-A phase in parallel plate geometry

    Full text link
    The half quantum vortex(HQV) in condensate has been studied, since it was predicted by Salomaa and Volovik in superfluid 3^3He-A phase. However, an experimental evidence for its existence has not been reported so far. Motivated by a recent experimental report by Yamashita et al\cite{yamashita}, we study the HQVs in superfluid 3^3He confined between two parallel plates with a gap D \sim 10 μ\mum in the presence of a magnetic field H \sim 26 mT perpendicular to the parallel plates. We find that the bound HQVs are more stable than the singular vortices and free pairs of HQVs, when the rotation perpendicular to the parallel plates is below the critical speed, Ωc\Omega_c \sim 2 rad/s. The bound pair of HQVs accompanies the tilting of d^{\hat d}-vector out of the plane, which leads to an additional absorption in NMR spectra. Our study appears to describe the temperature and rotation dependence of the observed satellite NMR signal, which supports the existence of the HQVs in 3^3He.Comment: 5 pages, 5 figure

    Evaluation of fish behaviour and aggregation by underwater videography in an artificial reef in Tioman Island, Malaysia

    Get PDF
    The behaviour and aggregation of fish in an artificial reef area in Tioman Island, Malaysia, was observed using underwater videography under a combination of shooting conditions. The camera distance and direction relative to the neighboring artificial reef module was varied, and comparisons of images with a color filter were made. A distance of 260 cm at a diagonal shooting angle provided a suitable observation of the reef fish around the reef module, and a red color filter provided a truer color replication in morning observations while better images were obtained without the color filter in afternoon light environments. Four criteria were considered to assess the artificial reef effectiveness: total abundance, appearance rate, residence time and feeding frequency. A total of 824 individuals were observed during the study. Mean residence times were shorter for schooling fishes such as Caesio caerulaurea and Liza subviridis, and longer for solitary swimmers like Cephalopholis boenak and Scolopsis bilineatus. Feeding frequency was lower for schooling fishes. A significant correlation was obtained between the feeding frequency and residence time for the high feeding frequency fishes (r = 0.89; p<0.05). The effectiveness of the artificial reef was suggested to be significant in solitary swimmers but less so for schooling fishes

    A Primer on the Current State-of-the-Science Neoadjuvant and Adjuvant Therapy for Patients with Locally Advanced Rectal Adenocarcinomas

    Get PDF
    Patients with rectal cancers, due to the unique location of the tumor, have a recurrence pattern distinct from colon cancers. Advances in adjuvant therapy over the last three decades have played an important role in improving patient outcomes. This article serves to review the clinical studies that lay the basis for our current standard-of-care treatment of patients with locally advanced rectal cancer, as well as touch upon future ongoing experimental clinical trials of adjuvant chemoradiation therapy

    Half-quantum vortex and d-soliton in Sr2_2RuO4_4

    Full text link
    Assuming that the superconductivity in Sr2_2RuO4_4 is described by a planar p-wave order parameter, we consider possible topological defects in Sr2_2RuO4_4. In particular, it is shown that both of the d^{\hat d}-soliton and half-quantum vortex can be created in the presence of the magnetic field parallel to the aa-bb plane. We discuss how one can detect the d^{\hat d}-soliton and half-quantum vortex experimentally.Comment: 8 pages, 3 figure

    Supply chain security certification and operational performance:The role of upstream complexity

    Get PDF
    Supply chain security (SCS) incidents increasingly cause financial losses to manufacturing facilities and logistics service providers. Thus, supply chain security certification can have implications for production economics, particularly for importing firms who rely on a smooth logistics flow across country borders. However, it largely remains unknown regarding how such certification could influence a firm's operational performance. To this end, we empirically examine whether and how the adoption of Customs-Trade Partnership Against Terrorism (C-TPAT) certification, initiated by the U.S. Customs and Border Protection (CBP), could improve operational performance in adopter firms. This study draws upon signaling theory to empirically investigate the value of C-TPAT certification on U.S. publicly-traded importer firms' operational performance by analyzing the longitudinal data of properly-matched sample-control groups. The data come from multiple sources: public announcements of C-TPAT certification from the News Retrieval Service database, import data from lading records, and financial data from Standard & Poor's COMPUSTAT database. Employing a coarsened exact matching (CEM) method and a difference-in-difference (DID) analysis, we find that C-TPAT certified importers have better operational performance than that of non-certified importers. We also find that the level of upstream supply chain complexity (detail, dynamic, and spatial complexity) enhances the operational performance derived from C-TPAT certification. This study sheds light on the performance value of a management standard that is attributed to the non-process mechanism (not due to process improvements) enabled by the signaling effectiveness incorporating the upstream supply chain complexities. Our findings have important theoretical and practical implications for production economics and supply chain management studies

    Coarse-grained simulations of the solution-phase self-assembly of poly(3-hexylthiophene) nanostructures

    Get PDF
    Under certain conditions the conjugated polymer poly(3-hexylthiophene) (P3HT) self-assembles into high-aspect-ratio nanostructures (known as nanofibres, nanowires, or nanoribbons) when cooled below its solubility limit in a marginal solvent such as anisole. Such nanostructures are potentially beneficial for organic photovoltaic device performance. In this work, Langevin dynamics simulations of a coarse-grained model of P3HT in implicit anisole solvent are used to study the self-assembly of P3HT nanostructures for polymer chain lengths and concentrations used experimentally to prepare P3HT nanofibres. The coarse-grained model is parametrised to match the local structure and dynamics of an atomistic model with explicit solvent. Nanofibres are also prepared experimentally and characterised by atomic force microscopy and UV-vis spectroscopy. The simulations match the experimental phase behaviour of P3HT in anisole, showing aggregation of P3HT at 293 and 308 K but not at 323 or 353 K. Single-chain simulations at 293 K reveal two distinct nano-scale aggregate morphologies: hairpins and helices. Hairpin aggregates, which are the precursors of nanofibres, are slightly favoured energetically at 293 K for nuclei of the critical size of ≈80 monomers for aggregation. Consequently, chains in multi-chain aggregates adopt the hairpin morphology exclusively in simulations at experimental concentrations at 293 K. The simulated aggregate sizes match experimentally measured nanofibre widths. An estimate of the shift in UV-vis absorption of P3HT due to the change in conjugation length with aggregation in the simulations agrees reasonably well with experiment and shows that most of the spectral red shift that occurs with nanofibre formation is due to increased planarisation of the P3HT chains. In addition to providing insight into the mechanisms of nanofibre formation, the simulations resolve details of the molecular-level organisation of chains in P3HT nanofibres hitherto inaccessible by experiment.Kyra N. Schwarz, Tak W. Kee and David M. Huan
    corecore