212 research outputs found

    An Attention-based Approach to Hierarchical Multi-label Music Instrument Classification

    Full text link
    Although music is typically multi-label, many works have studied hierarchical music tagging with simplified settings such as single-label data. Moreover, there lacks a framework to describe various joint training methods under the multi-label setting. In order to discuss the above topics, we introduce hierarchical multi-label music instrument classification task. The task provides a realistic setting where multi-instrument real music data is assumed. Various hierarchical methods that jointly train a DNN are summarized and explored in the context of the fusion of deep learning and conventional techniques. For the effective joint training in the multi-label setting, we propose two methods to model the connection between fine- and coarse-level tags, where one uses rule-based grouped max-pooling, the other one uses the attention mechanism obtained in a data-driven manner. Our evaluation reveals that the proposed methods have advantages over the method without joint training. In addition, the decision procedure within the proposed methods can be interpreted by visualizing attention maps or referring to fixed rules.Comment: To appear at ICASSP 202

    Effects of spatially limited external magnetic fields on short sample tests of large-scale superconductors

    Get PDF
    For short sample tests of large-scale superconductor coil conductors, it is difficult to get sufficient spatial uniformity using external magnetic fields because of the size limitations of test facilities. The effects of spatially limited external magnetic fields on short sample tests are discussed by comparing the test results for narrow and broad external magnetic fields. The authors tested short samples of pool-cooled 10 kA class superconductors using two kinds of split coils which are different in bore size. The measured recovery currents for the narrow external field are more than twice those for the broad field. It shows that the insufficient spatial distribution of the external field biases the stability measurements of superconductor

    Strong ice-ocean interaction beneath Shirase Glacier Tongue in East Antarctica

    Get PDF
    Mass loss from the Antarctic ice sheet, Earth’s largest freshwater reservoir, results directly in global sea-level rise and Southern Ocean freshening. Observational and modeling studies have demonstrated that ice shelf basal melting, resulting from the inflow of warm water onto the Antarctic continental shelf, plays a key role in the ice sheet’s mass balance. In recent decades, warm ocean-cryosphere interaction in the Amundsen and Bellingshausen seas has received a great deal of attention. However, except for Totten Ice Shelf, East Antarctic ice shelves typically have cold ice cavities with low basal melt rates. Here we present direct observational evidence of high basal melt rates (7–16 m yr−1) beneath an East Antarctic ice shelf, Shirase Glacier Tongue, driven by southward-flowing warm water guided by a deep continuous trough extending to the continental slope. The strength of the alongshore wind controls the thickness of the inflowing warm water layer and the rate of basal melting

    Trial of Sportswear Type ECG Sensor Device for Cardiac Safety Management during Marathon Running

    Get PDF
    Cardiac arrest has been reported during participation in several sports. Of these sports, marathon running is a particularly popular sport but imposes high cardiac load. Indeed, its popularity has been growing worldwide. Risk of cardiac arrest during marathon races is also expected to increase. Several studies have recorded electrocardiographic (ECG) information during marathon races to protect athletes from cardiac arrest. Although evaluable ECG data have been obtained and analyzed, cost-effectiveness of the system, data quality, and clinical significance remain inadequate. This report is the first to describe an economical electrocardiograph built into a T-shirt for use during marathon race. Twenty healthy runners aged 20 to 59 years (mean 36 years) wore the ECG device while running. The ECG data were monitored and analyzed to assess the observed frequencies of specified arrhythmias and the sections of the marathon in which the arrhythmias occurred. Of the ECG data obtained from 14 runners who completed the full marathon, six ECG datasets were evaluable. In some runners, there was inadequate contact between the electrode and body surface or poor Bluetooth connection between the ECG wireless transmitter and smartphone. Regarding arrhythmia analysis, all evaluable data that were analyzed showed some rhythm fluctuations. In conclusion, this economical T-shirt type ECG sensor provided evaluable ECG data during marathon races, although the evaluable rate was not high. The data were used to analyze specified arrhythmias, but some difficulties were encountered. The ECG sensor did not function properly because of a system error. The ECG sensor was not adequately moistened to record ECGs accurately. Moreover, some runners chose an unsuitable shirt size, which impaired the stability and strength of the electrode–skin contact. These shortcomings produced noise in the ECG data, which made it difficult to analyze arrhythmias. The next step will be to solve these problems and acquire data from a large number of runners

    Hydrogen-bond-assisted isotactic-specific radical polymerization of N-vinyl-2-pyrrolidone with tartrate additives in toluene at low temperatures : high-resolution 1H NMR analysis

    Get PDF
    A diethyl L-tartrate (L-EtTar)-assisted radical polymerization of N-vinyl-2-pyrrolidone has been developed as the first reported example of the synthesis of isotactic-rich poly(N-vinyl-2-pyrrolidone) (PVP). The addition of L-EtTar in toluene at temperatures of –40°C and lower led to a significant increase in the polymer yield by one order of magnitude compared with the reaction in the absence of L-EtTar. Decreasing the polymerization temperature led to increases in the isotacticity of the PVP, with the mm triad reaching 66.4% at −93 °C. 1H NMR measurement at 920 MHz was conducted to establish a reliable strategy for quantifying the triad tacticities. High-temperature NMR measurements at 250 °C were performed using a specially-designed NMR probe, which led to dramatic narrowing of the 1H line width
    corecore