18 research outputs found
Scalability of spin FPGA: A Reconfigurable Architecture based on spin MOSFET
Scalability of Field Programmable Gate Array (FPGA) using spin MOSFET (spin
FPGA) with magnetocurrent (MC) ratio in the range of 100% to 1000% is discussed
for the first time. Area and speed of million-gate spin FPGA are numerically
benchmarked with CMOS FPGA for 22nm, 32nm and 45nm technologies including 20%
transistor size variation. We show that area is reduced and speed is increased
in spin FPGA owing to the nonvolatile memory function of spin MOSFET.Comment: 3 pages, 7 figure
The Japanese space gravitational wave antenna; DECIGO
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future
Japanese space gravitational wave antenna. DECIGO is expected to open a new window of
observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing
various mysteries of the universe such as dark energy, formation mechanism of supermassive
black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of
three drag-free spacecraft, whose relative displacements are measured by a differential Fabry–
Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-
DECIGO first and finally DECIGO in 2024
DECIGO pathfinder
DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article
Evaluation of Pax6 Mutant Rat as a Model for Autism
Autism is a highly variable brain developmental disorder and has a strong genetic basis. Pax6 is a pivotal player in brain development and maintenance. It is expressed in embryonic and adult neural stem cells, in astrocytes in the entire central nervous system, and in neurons in the olfactory bulb, amygdala, thalamus, and cerebellum, functioning in highly context-dependent manners. We have recently reported that Pax6 heterozygous mutant (rSey2/+) rats with a spontaneous mutation in the Pax6 gene, show impaired prepulse inhibition (PPI). In the present study, we further examined behaviors of rSey2/+ rats and revealed that they exhibited abnormality in social interaction (more aggression and withdrawal) in addition to impairment in rearing activity and in fear-conditioned memory. Ultrasonic vocalization (USV) in rSey2+ rat pups was normal in male but abnormal in female. Moreover, treatment with clozapine successfully recovered the defects in sensorimotor gating function, but not in fear-conditioned memory. Taken together with our prior human genetic data and results in other literatures, rSey2/+ rats likely have some phenotypic components of autism
The status of DECIGO
DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present
Robotic-Assisted Total Knee Arthroplasty for Distal Femur Fracture with Lateral Knee Osteoarthritis
Introduction. Open reduction and internal fixation (ORIF) of compound fractures around the knee in elderly patient raise concerns about long-term postoperative external fixation and complications. Total knee arthroplasty (TKA) has been proposed as an alternative solution. We report a case where robotic-assisted (RA) TKA was used to treat lateral knee osteoarthritis (OA) with distal femur fracture. Case Presentation. A 90-year-old female visited our hospital with complications of sustained knee pain after a fall at home. Fracture line from the trochlea to the intercondylar notch was diagnosed on plain radiographs, and prior to this injury, the patient was receiving conservative treatment for lateral OA. We selected a conventional TKA over ORIF because the latter is associated with residual pain and the need for long-term immobilization, which can lead to other complications. However, the fracture site was the entry point for intramedullary rod, and there was concern that the fracture site would be displaced by conventional TKA. Therefore, the unique aspect of the case is that the technique utilized involved robotic milling using the Navio system while temporarily stabilizing the fracture using two tracker pins. RA TKA could determine osteotomy and implant placement by predicting the postoperative patient’s soft tissue balance for no medial loosening and lateral contracture. The arthritic cartilage and bone were then methodically removed using the handheld sculptor. After immobilizing the fracture site with a bone grasper before removing the pin tracker, reaming of the femur and insertion of a stem prosthesis with semiconstrained were performed. Primary RA TKA is a viable option for intra-articular fractures in elderly patients with advanced knee osteoarthritis
Anatomical bi-cruciate retaining TKA improves gait ability earlier than bi-cruciate stabilized TKA based on triaxial accelerometery data: A prospective cohort study
Background: Total knee arthroplasty (TKA) is a common and cost-effective surgical treatment for osteoarthritis of the knee. However, only 82-89% of patients who performed TKA are satisfied with the postoperative outcomes. Therefore, bi-cruciate retaining (BCR) TKA is re-attracting attention. By retaining the anterior cruciate ligament (ACL), the knee may obtain the kinematic pathway that are closer to the native knee. The aim of the present study is to compare the ability to walk before and after surgery in patients who underwent bi-cruciate retaining total knee arthroplasty (BCR TKA) versus bi-cruciate stabilized (BCS) TKA during the early postoperative period. Methods: Subjects included patients who underwent BCR TKA (10 knees) and BCS TKA (15 knees). We administered 10-meter gait tests before surgery and at 6 weeks and 3 months after surgery. We collected the following triaxial accelerometery data with a portable gait analyzer: walking time, number of steps, velocity, stride length, and coefficient of variability (CV) of double-leg support time while walking. Results: Patients who underwent BCR TKA improved their gait ability [walking time (p < 0.01), number of steps (p < 0.05), velocity (p < 0.01), and stride length (p < 0.01) more than those who received BCS TKA at 6 weeks after surgery. BCR TKA improved gait ability (walking time, number of steps, velocity, and stride length) more than BCS TKA at 6 weeks after surgery. At 6 weeks after surgery, CV of double-leg support time while walking improved more in the BCR TKA group than in the BCS TKA group (p < 0.05). Conclusions: BCR TKA is associated with improved gait ability in the early postoperative period