100 research outputs found
Production of overdense plasmas by launching 2,45 GHz electron cyclotron waves in a helical device
For production of low temperature plasmas with low collisionality, 2.45GHz
microwave power up to 20kW is injected perpendicularly to the toroidal field at
very low toroidal field BtComment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Tangential SX Imaging for Visualization of Fluctuations in Toroidal Plasmas
When the ratio of the plasma pressure to the magnetic pressure increases, Various kinds of instabilities evolve. Among them, magnetohydrodynamic instabilities, by which the plasma is deformed macroscopically, are in concern. Non-linear evolution of them is fairly complicated and two-dimensional structure of them is the key to understanding the phenomena. Tangentially viewing SX camera is promising diagnostics for 2D visualization, because most of the perturbations tend to have the equal phase along the field lines, the tangential view, which is almost parallel to the field lines, give a good opportunity to resolve the structure. Issues in this kind of camera are discussed. Improved system using multi-layer mirror is also described
Experimental Simulation of High Temperature Plasma Transport Using Almost Dimensionally Similar Cold Plasmas in the Compact Helical System
In the Compact Helical System (CHS), experimental simulation of high temperature plasma transport is attempted by using cold plasma having similar dimensionless parameters such as electron-ion collision frequency normalized by bounce frequency v*ei, averaged toroidal beta value βt and the normalized gyro radius ρs*. The cold plasma is produced by 2.45 GHz electron cyclotron waves at very low toroidal field less than 0.1 T, and has v*ei ~ 0.05?1, βt < 0.02 % and ρs* ~ 0.02?0.05. The radial profiles of fluctuation amplitude have similarity to those in a high temperature plasma. In the cold plasma with low v*ei < 0.1, internal transport barrier is clearly formed in electron density and temperature profiles when the radial electric field rapidly evolves to positive value
Fast-Ion-Diagnostics for CHS Experiment
Fast-ion-diagnostics have played an important role in investigating issues related to fast ion orbits and fast-ion-driven MHD instabilities in CHS experiments. The fast-ion diagnostics employed in CHS are reviewed and experimentally obtained knowledge is summarized
Relationships between the Prediction of Linear MHD Stability Criteria and the Experiment in LHD
We analyze the relationship between the experimentally observed pressure gradients at resonant rational surfaces and the theoretically predicted ideal magnetohydrodynamics (MHD) unstable region of global modes in the large helical device (LHD). According to the stability analysis of the ideal MHD modes with a low toroidal mode number, we find that the ideal MHD mode gives a constraint on the operational regime of the pressure gradients in the core. In the edge, a clear saturation of the pressure gradients due to the ideal MHD instability has not been observed up to the high beta regime around 3% as the volume-averaged toridal beta value, where global ideal MHD modes are predictedto be unstable
Magnetic configuration effects on TAE-induced losses and a comparison with the orbit-following model in the Large Helical Device
Fast-ion losses from Large Helical Device (LHD) plasmas due to toroidal Alfvén eigenmodes (TAEs) were measured by a scintillator-based lost fast-ion probe (SLIP) to understand the loss processes. TAE-induced losses measured by the SLIP appeared in energy E ranges of around 50–180 keV with pitch angles χ between 35°–45°, and increased with the increase in TAE amplitudes. Position shifts of the magnetic axis due to a finite plasma pressure led not only to an increase in TAE-induced losses but also to a stronger scaling of fast-ion losses on TAE amplitudes. Characteristics of the observed fast-ion losses were compared with a numerical simulation based on orbit-following models in which the TAE fluctuations are taken into account. The calculation indicated that the number of lost fast ions reaching the SLIP increased with the increase in the TAE amplitude at the TAE gap. Moreover, the calculated dependence of fast-ion loss fluxes on the fluctuation amplitude became stronger in the case of large magnetic axis shifts, compared with the case of smaller shifts, as was observed in the experiments. The simulation results agreed qualitatively with the experimental observations in the LHD
Impact of Energetic Ion Driven Global Modes on Toroidal Plasma Confinements
Excitation of energetic-ion-driven Alfv6n eigenmodes (AEs) and their impact on energetic ion confinement are widely and intensively studied in helical devices such as CHS and LHD as well as major tokamaks. The excitation of AEs sensitively depends on the parameter space defined by the averaged beam beta and the velocity ratio V6nlV6 (V611 : injected beam ion velocity, Va: Alfv6n velocity). In LHD, these two relevant parameters are widely scanned without suffering from current disruptions. So far, toroidicity induced AE (TAE), global AE (GAE) and energetic particle mode (EPM) or resonant TAE (R-TAE) were identified during tangential neutral beam injection (NBI) in CHS and LHD. Moreover, a new coherent mode with the frequency by about 8 times higher than the TAE frequency was observed in NBI heated plasmas of LHD at low magnetic field (<0.6T). This mode may be induced by helical field components of the confinement field. Nonlinear phenomena of bursting amplitude modulation and fast frequency chirping are clearly seen for TAEs and EPMs in CHS and LHD. EPMs in CHS and bursting TAEs in LHD enhance radial transport of energetic ions in certain plasma conditions
Calibrations of Fast Ion Flux Measurement Using a Hybrid Directional Probe
A hybrid directional probe method both “thermal and Langmuir probe” was applied for fast ion measure- ments in the compact helical system. In order to obtain absolute values of fast ion density and power density, a calibration of the probe was performed using neutral hydrogen beam and a mixture beam of hydrogen and proton, of which beam current and energy were controlled. The conversion factor from temperature increase of the probe head to local power density and secondary electron emission yield was obtained. The density of fast ions was obtained by directional thermal probe (DTP) method inside the last closed flux surface, and the density ratio was nFastIon/nBulkPlasma = 2.7 × 10?3 at r/a = 0.9. The observation of the directional Langmuir probe (DLP) method is consistent with the DTP results
- …