17 research outputs found
Highly Efficient Slow and Fast Light Generation via Brillouin Scattering in As2Se3 Chalcogenide Fiber
Delaying and advancement of optical pulses using stimulated Brillouin scattering in As2Se3 fiber is demonstrated. Pulses can be delayed by 37 ns in a 5-m-long fiber with a pump power as low as 60 mW
Highly efficient Brillouin slow and fast light using As2Se 3 chalcogenide fiber
We demonstrate the generation of slow and fast light based on stimulated Brillouin scattering in As2Se3 chalcogenide fiber with the best efficiency ever reported. The Brillouin gain of 43 dB is achieved with only 60-mW pump power in a 5-m single-mode chalcogenide fiber, which leads to the optical time delay of 37 ns with a 50-ns Gaussian pulse. © 2006 Optical Society of America
Brillouin Optical Correlation-Domain Technologies Based on Synthesis of Optical Coherence Function as Fiber Optic Nerve Systems for Structural Health Monitoring
Brillouin optical correlation-domain technologies are reviewed as “fiber optic nerve systems” for the health monitoring of large structures such as buildings, bridges, and aircraft bodies. The Brillouin scattering property is used as a sensing mechanism for strain and/or temperature. Continuous lightwaves are used in the technologies, and their optical coherence properties are synthesized to realize position-selective measurement. This coherence manipulation technology is called the “synthesis of optical coherence function (SOCF)”. By utilizing SOCF technologies, stimulated Brillouin scattering is generated position-selectively along the fiber, which is named “Brillouin optical correlation domain analysis (BOCDA)”. Spontaneous Brillouin scattering, which takes place at any portion along the fiber, can also be measured position-selectively by the SOCF technology. This is called “Brillouin optical correlation domain reflectometry (BOCDR)”. When we use pulsed lightwaves that have the position information, sensing performances, such as the spatial resolution, are inherently restricted due to the Brillouin scattering nature. However, in the correlation-domain technologies, such difficulties can be reduced. Superior performances have been demonstrated as distribution-sensing mechanisms, such as a 1.6-mm high spatial resolution, a fast measurement speed of 5000 points/s, and a 7000-με strain dynamic range, individually. The total performance of the technologies is also discussed in this paper. A significant feature of the technologies is their random accessibility to discrete multiple points that are selected arbitrarily along the fiber, which is not realized by the time domain pulsed-lightwave technologies. Discriminative and distributed strain/temperature measurements have also been realized using both the BOCDA technology and Brillouin dynamic grating (BDG) phenomenon, which are associated with the stimulated Brillouin scattering process. In this paper, the principles, functions, and applications of the SOCF, BOCDA, BOCDR, and BDG-BOCDA systems are reviewed, and their historical aspects are also discussed