10 research outputs found

    Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions

    No full text
    Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvénic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvénic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity

    Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions

    No full text
    Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvenic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvenic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity

    Unitary integrals and related matrix models

    No full text

    Overview of physics results from MAST upgrade towards core-pedestal-exhaust integration

    No full text
    Abstract Recent results from MAST Upgrade are presented, emphasising understanding the capabilities of this new device and deepening understanding of key physics issues for the operation of ITER and the design of future fusion power plants. The impact of MHD instabilities on fast ion confinement have been studied, including the first observation of fast ion losses correlated with Compressional and Global AlfvĂ©n Eigenmodes. High-performance plasma scenarios have been developed by tailoring the early plasma current ramp phase to avoid internal reconnection events, resulting in a more monotonic q profile with low central shear. The impact of m/n = 3/2, 2/1 and 1/1 modes on thermal plasma confinement and rotation profiles has been quantified, and scenarios optimised to avoid them have transiently reached values of normalised beta approaching 4.2. In pedestal and ELM physics, a maximum pedestal top temperature of ∌350 eV has been achieved, exceeding the value achieved on MAST at similar heating power. Mitigation of type-I ELMs with n = 1 RMPs has been observed. Studies of plasma exhaust have concentrated on comparing conventional and Super-X divertor configurations, while X-point target, X-divertor and snowflake configurations have been developed and studied in parallel. In L-mode discharges, the separatrix density required to detach the outer divertors is approximately a factor 2 lower in the Super-X than the conventional configuration, in agreement with simulations. Detailed analysis of spectroscopy data from studies of the Super-X configuration reveal the importance of including plasma-molecule interactions and D2 Fulcher band emission to properly quantify the rates of ionisation, plasma-molecule interactions and volumetric recombination processes governing divertor detachment. In H-mode with conventional and Super-X configurations, the outer divertors are attached in the former and detached in the latter with no impact on core or pedestal confinement.</jats:p

    Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions

    Get PDF
    Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfv\ue9nic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfv\ue9nic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity

    Fast-ion orbit sensitivity of neutron and gamma-ray diagnostics for one-step fusion reactions

    No full text
    Fast ions in the MeV-range can be diagnosed by neutron emission spectroscopy (NES) and gamma-ray spectroscopy (GRS). In this work, we present orbit weight functions for one-step fusion reactions, using NES and GRS diagnostics on perpendicular and oblique lines-of-sight (LOS) at Joint European Torus (JET) as examples. The orbit weight functions allow us to express the sensitivities of the diagnostics in terms of fast-ion (FI) orbits and can be used to swiftly reproduce synthetic signals that have been computed by established codes. For diagnostically relevant neutron energies for the D(D, n)He-3 reaction, the orbit sensitivities of the NES diagnostics follow a predictable pattern. As the neutron energy of interest increases, the pattern shifts upwards in FI energy. For the GRS diagnostic and the T(p,gamma)He-4 reaction, the orbit sensitivity is shown to be qualitatively different for red-shifted, blue-shifted and nominal gamma birth energies. Finally, we demonstrate how orbit weight functions can be used to decompose diagnostic signals into the contributions from different orbit types. For a TRANSP simulation of the JET discharge (a three-ion ICRF scenario) considered in this work, the NES signals for both the perpendicular and oblique LOS are shown to originate mostly from co-passing orbits. In addition, a significant fraction of the NES signal for the oblique LOS is shown to originate from stagnation orbits

    Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions

    No full text
    Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvenic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvenic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity

    Fast ion transport by sawtooth instability in the presence of ICRF-NBI synergy in JET plasmas

    No full text
    JET experiments have shown that the three-ion scenarios using waves in the ion cyclotron range of frequencies (ICRF) is an efficient way to build fast ion population through beam ion acceleration by radio frequency (RF) waves. Such a heating scheme is applied to plasmas with at least two thermal ion species. Analysis of mixed discharges with complex heating schemes requires a workflow that allows to model thermal and fast ion transport consistently. This paper is dedicated to modelling of a mixed plasma discharge with significant fraction of fast ions and contributes to development of fast ion transport models. For interpretive analysis with the TRANSP code a JET hydrogen-deuterium plasma discharge with neutral beam injection (NBI) and ICRF heating has been chosen. The task is complicated by NBI-ICRF synergy and plasma magnetohydrodynamic activity, like sawtooth crashes. D beam ions accelerated by RF waves form a high energy tail in fast ion distribution. Significant difference between the neutron rate computed by TRANSP and measured one is observed if the same diffusivity for electrons and ions is assumed. Sensitivity studies show that uncertainties in input plasma parameters and thermal ion transport models are crucial for modelling mixed plasma discharges and increased D transport is required to reach the plasma composition consistent with diagnostic measurements at the plasma edge. Fast ion redistribution by a sawtooth instability is characterised by non-resonant transport due to reconnection of magnetic field lines and resonant transport caused by resonance interaction between the instability and fast ions. With ORBIT simulations it has been shown that resonant interaction strongly affects fast ions of high energies, like beam ions accelerated by RF waves and fusion products. For the considered case, fast ion profiles simulated by ORBIT remain peaked after the sawtooth crashes

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019-2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (alpha) physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER
    corecore