15 research outputs found
Optical Tracer Size Differences Allow Quantitation of Active Pumping Rate Versus Stokes–Einstein Diffusion in Lymphatic Transport
Lymphatic uptake of interstitially administered agents occurs by passive convective–diffusive inflow driven by interstitial concentration and pressure, while the downstream lymphatic transport is facilitated by active propulsive contractions of lymphatic vessel walls. Near-infrared fluorescence imaging in mice was used to measure these central components of lymphatic transport for the first time, using two different-sized molecules––methylene blue (MB) and fluorescence-labeled antibody immunoglobulin G (IgG)-IRDye 680RD. This work confirms the hypothesis that lymphatic passive inflow and active propulsion rates can be separated based upon the relative differences in Stokes–Einstein diffusion coefficient. This coefficient specifically affects the passive-diffusive uptake when the interstitial volume and pressure are constant. Parameters such as mean time-to-peak signal, overall fluorescence signal intensities, and number of active peristaltic pulses, were estimated from temporal imaging data. While the mean time to attain peak signal representative of diffusion-dominated flow in the lymph vessels was 0.6±0.2  min for MB and 8±6  min for IgG, showing a size dependence, the active propulsion rates were 3.4±0.8  pulses/min and 3.3±0.5  pulses/min, respectively, appearing size independent. The propulsion rates for both dyes decreased with clearance from the interstitial injection-site, indicating intrinsic control of the smooth muscles in response to interstitial pressure. This approach to size-comparative agent flow imaging of lymphatic function can enable noninvasive characterization of diseases related to uptake and flow in lymph networks
Microdose Fluorescence Imaging of ABY-029 on an Operating Microscope Adapted by Custom Illumination and Imaging Modules
Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials
Collagen Complexity Spatially Defines Microregions of Total Tissue Pressure in Pancreatic Cancer.
The poor efficacy of systemic cancer therapeutics in pancreatic ductal adenocarcinoma (PDAC) is partly attributed to deposition of collagen and hyaluronan, leading to interstitial hypertension collapsing blood and lymphatic vessels, limiting drug delivery. The intrinsic micro-regional interactions between hyaluronic acid (HA), collagen and the spatial origins of mechanical stresses that close off blood vessels was investigated here. Multiple localized pressure measurements were analyzed with spatially-matched histochemical images of HA, collagen and vessel perfusion. HA is known to swell, fitting a linear elastic model with total tissue pressure (TTP) increasing above interstitial fluid pressure (IFP) directly with collagen content. However, local TTP appears to originate from collagen area fraction, as well as increased its entropy and fractal dimension, and morphologically appears to be maximized when HA regions are encapsulated by collagen. TTP was inversely correlated with vascular patency and verteporfin uptake, suggesting interstitial hypertension results in vascular compression and decreased molecular delivery in PDAC. Collagenase injection led to acute decreases in total tissue pressure and increased drug perfusion. Large microscopic variations in collagen distributions within PDAC leads to microregional TPP values that vary on the hundred micron distance scale, causing micro-heterogeneous limitations in molecular perfusion, and narrows viable treatment regimes for systemically delivered therapeutics
Assessing Daylight & Low-Dose Rate Photodynamic Therapy Efficacy, Using Biomarkers of Photophysical, Biochemical and Biological Damage Metrics in Situ.
Background Sunlight can activate photodynamic therapy (PDT), and this is a proven strategy to reduce pain caused by conventional PDT treatment, but assessment of this and other alternative low dose rate light sources, and their efficacy, has not been studied in an objective, controlled pre-clinical setting. This study used three objective assays to assess the efficacy of different PDT treatment regimens, using PpIX fluorescence as a photophysical measure, STAT3 cross-linking as a photochemical measure, and keratinocyte damage as a photobiological measure. Methods Nude mouse skin was used along with in vivo measures of photosensitizer fluorescence, keratinocyte nucleus damage from pathology, and STAT3 cross-linking from Western blot analysis. Light sources compared included a low fluence rate red LED panel, compact fluorescent bulbs, halogen bulbs and direct sunlight, as compared to traditional PDT delivery with conventional and fractionated high fluence rate red LED light delivery. Results Of the three biomarkers, two had strong correlation to the PpIX-weighted light dose, which is calculated as the product of the treatment light dose (J/cm2) and the normalized PpIX absorption spectra. Comparison of STAT3 cross-linking to PpIX-weighted light dose had an R = 0.74, and comparison of keratinocyte nuclear damage R = 0.70. There was little correlation to PpIX fluorescence. These assays indicate most of the low fluence rate treatment modalities were as effective as conventional PDT, while fractionated PDT showed the most damage. Conclusions Daylight or artificial light PDT provides an alternative schedule for delivery of drug-light treatment, and this pre-clinical assay demonstrated that in vivo assays of damage could be used to objectively predict a clinical outcome in this altered delivery process. Graphical abstract Low-fluence daylight photodynamic therapy (PDT) has been shown to reduce pain with similar efficacy of conventional treatments. Three objective assays were performed to assess efficacy of different light treatment strategies: PpIX photobleaching, STAT3 crosslinking, and keratinocyte damage. Of these metrics, STAT3 crosslinking and keratinocyte damage showed a strong correlation to the PpIX-weighted light dose
Application of Fluorescence-Guided Surgery to Subsurface Cancers Requiring Wide Local Excision: Literature Review and Novel Developments Toward Indirect Visualization.
The excision of tumors by wide local excision is challenging because the mass must be removed entirely without ever viewing it directly. Positive margin rates in sarcoma resection remain in the range of 20% to 35% and are associated with increased recurrence and decreased survival. Fluorescence-guided surgery (FGS) may improve surgical accuracy and has been utilized in other surgical specialties. ABY-029, an anti-epidermal growth factor receptor Affibody molecule covalently bound to the near-infrared fluorophore IRDye 800CW, is an excellent candidate for future FGS applications in sarcoma resection; however, conventional methods with direct surface tumor visualization are not immediately applicable. A novel technique involving imaging through a margin of normal tissue is needed. We review the past and present applications of FGS and present a novel concept of indirect FGS for visualizing tumor through a margin of normal tissue and aiding in excising the entire lesion as a single, complete mass with tumor-free margins
Collagen Complexity Spatially Defines Microregions of Total Tissue Pressure in Pancreatic Cancer
The poor efficacy of systemic cancer therapeutics in pancreatic ductal adenocarcinoma (PDAC) is partly attributed to deposition of collagen and hyaluronan, leading to interstitial hypertension collapsing blood and lymphatic vessels, limiting drug delivery. The intrinsic micro-regional interactions between hyaluronic acid (HA), collagen and the spatial origins of mechanical stresses that close off blood vessels was investigated here. Multiple localized pressure measurements were analyzed with spatially-matched histochemical images of HA, collagen and vessel perfusion. HA is known to swell, fitting a linear elastic model with total tissue pressure (TTP) increasing above interstitial fluid pressure (IFP) directly with collagen content. However, local TTP appears to originate from collagen area fraction, as well as increased its entropy and fractal dimension, and morphologically appears to be maximized when HA regions are encapsulated by collagen. TTP was inversely correlated with vascular patency and verteporfin uptake, suggesting interstitial hypertension results in vascular compression and decreased molecular delivery in PDAC. Collagenase injection led to acute decreases in total tissue pressure and increased drug perfusion. Large microscopic variations in collagen distributions within PDAC leads to microregional TPP values that vary on the hundred micron distance scale, causing micro-heterogeneous limitations in molecular perfusion, and narrows viable treatment regimes for systemically delivered therapeutics
Comparing desferrioxamine and light fractionation enhancement of ALA-PpIX photodynamic therapy in skin cancer
Aminolevulinic acid (ALA)-based photodynamic therapy (PDT) provides selective uptake and conversion of ALA into protoporphyrin IX (PpIX) in actinic keratosis and squamous cell carcinoma, yet large response variations in effect are common between individuals. The aim of this study was to compare pre-treatment strategies that increase the therapeutic effect, including fractionated light delivery during PDT (fPDT) and use of iron chelator desferrioxamine (DFO), separately and combined
Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma
While extent of tumor resection is an important predictor of outcome in glioma, margin delineation remains challenging due to lack of inherent contrast between tumor and normal parenchyma. Fluorescence-guided surgery is promising for its ability to enhance contrast through exogenous fluorophores; however, the specificity and sensitivity of the underlying contrast mechanism and tumor delivery and uptake vary widely across approved and emerging agents
Comparing desferrioxamine and light fractionation enhancement of ALA-PpIX photodynamic therapy in skin cancer
Aminolevulinic acid (ALA)-based photodynamic therapy (PDT) provides selective uptake and conversion of ALA into protoporphyrin IX (PpIX) in actinic keratosis and squamous cell carcinoma, yet large response variations in effect are common between individuals. The aim of this study was to compare pre-treatment strategies that increase the therapeutic effect, including fractionated light delivery during PDT (fPDT) and use of iron chelator desferrioxamine (DFO), separately and combined