6,667 research outputs found

    Performance of the MIND detector at a Neutrino Factory using realistic muon reconstruction

    Get PDF
    A Neutrino Factory producing an intense beam composed of nu_e(nubar_e) and nubar_mu(nu_mu) from muon decays has been shown to have the greatest sensitivity to the two currently unmeasured neutrino mixing parameters, theta_13 and delta_CP . Using the `wrong-sign muon' signal to measure nu_e to nu_mu(nubar_e to nubar_mu) oscillations in a 50 ktonne Magnetised Iron Neutrino Detector (MIND) sensitivity to delta_CP could be maintained down to small values of theta_13. However, the detector efficiencies used in previous studies were calculated assuming perfect pattern recognition. In this paper, MIND is re-assessed taking into account, for the first time, a realistic pattern recognition for the muon candidate. Reoptimisation of the analysis utilises a combination of methods, including a multivariate analysis similar to the one used in MINOS, to maintain high efficiency while suppressing backgrounds, ensuring that the signal selection efficiency and the background levels are comparable or better than the ones in previous analyses

    Associated Charm Production in Neutrino-Nucleus Interactions

    Full text link
    In this paper a search for associated charm production both in neutral and charged current ν\nu-nucleus interactions is presented. The improvement of automatic scanning systems in the {CHORUS} experiment allows an efficient search to be performed in emulsion for short-lived particles. Hence a search for rare processes, like the associated charm production, becomes possible through the observation of the double charm-decay topology with a very low background. About 130,000 ν\nu interactions located in the emulsion target have been analysed. Three events with two charm decays have been observed in the neutral-current sample with an estimated background of 0.18±\pm0.05. The relative rate of the associated charm cross-section in deep inelastic ν\nu interactions, σ(ccˉν)/σNCDIS=(3.622.42+2.95(stat)±0.54(syst))×103\sigma(c\bar{c}\nu)/\sigma_\mathrm{NC}^\mathrm{DIS}= (3.62^{+2.95}_{-2.42}({stat})\pm 0.54({syst}))\times 10^{-3} has been measured. One event with two charm decays has been observed in charged-current νμ\nu_\mu interactions with an estimated background of 0.18±\pm0.06 and the upper limit on associated charm production in charged-current interactions at 90% C.L. has been found to be σ(ccˉμ)/σCC<9.69×104\sigma (c\bar{c} \mu^-)/\sigma_\mathrm{CC} < 9.69 \times 10^{-4}.Comment: 10 pages, 4 figure

    Polarization phenomena in open charm photoproduction processes

    Get PDF
    We analyze polarization effects in associative photoproduction of pseudoscalar (Dˉ\bar{D}) charmed mesons in exclusive processes γ+NYc+Dˉ\gamma+ N\to Y_c +\bar{D}, Yc=Λc+Y_c=\Lambda_c^+, Σc\Sigma_c. Circularly polarized photons induce nonzero polarization of the YcY_c-hyperon with xx- and zz-components (in the reaction plane) and non vanishing asymmetries Ax{\cal A}_x and Az{\cal A}_z for polarized nucleon target. These polarization observables can be predicted in model-independent way for exclusive Dˉ\bar{D}-production processes in collinear kinematics. The T-even YcY_c-polarization and asymmetries for non-collinear kinematics can be calculated in framework of an effective Lagrangian approach. The depolarization coefficients DabD_{ab}, characterizing the dependence of the YcY_c-polarization on the nucleon polarization are also calculated.Comment: 36 pages 13 figure

    Testing Deconfinement at High Isospin Density

    Full text link
    We study the transition from hadronic matter to a mixed phase of quarks and hadrons at high baryon and isospin densities reached in heavy ion collisions. We focus our attention on the role played by the nucleon symmetry energy at high density.In this respect the inclusion of a scalar isovector meson, the \delta-coupling, in the Hadron Lagrangian appears rather important. We study in detail the formation of a drop of quark matter in the mixed phase, and we discuss the effects on the quark drop nucleation probability of the finite size and finite time duration of the high density region. We find that, if the parameters of quark models are fixed so that the existence of quark stars is allowed, then the density at which a mixed phase starts forming drops dramatically in the range Z/A \sim 0.3--0.4. This opens the possibility to verify the Witten-Bodmer hypothesis on absolute stability of quark matter using ground-based experiments in which neutron-rich nuclei are employed. These experiments can also provide rather stringent constraints on the Equation of State (EoS) to be used for describing the pre-Supernova gravitational collapse. Consistent simulations of neutron rich heavy ion collisions are performed in order to show that even at relatively low energies, in the few AGeV range, the system can enter such unstable mixed phase. Some precursor observables are suggested, in particular a ``neutron trapping'' effect.Comment: 32 pages, 14 figures, elsart late

    Measurement of the production of charged pions by protons on a tantalum target

    Get PDF
    A measurement of the double-differential cross-section for the production of charged pions in proton--tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and 0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections d2σ/dpdθ{{\mathrm{d}^2 \sigma}} / {{\mathrm{d}p\mathrm{d}\theta}} at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the pion yields within the acceptance of typical neutrino factory designs are shown as a function of beam momentum. The measurement of these yields within a single experiment eliminates most systematic errors in the comparison between rates at different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys. J.

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO
    corecore