1,927 research outputs found
Predicting relapse in anti-neutrophil cytoplasmic antibody-associated vasculitis: A Systematic review and meta-analysis
Objectives: Relapses affect 30-50% of patients with ANCA-associated vasculitis (AAV) over 5 years, necessitating long-term treatment. Although there have been studies looking at predictors of relapse in AAV, this research has yet to translate clinically into guidance on tailored therapy. The aim of this systematic review was to identify and meta-analyse existing risk factors from the literature and produce a model to calculate individualised patient risk of relapse. Method: A search strategy was developed to include all studies identifying predictors of AAV relapse using multivariate analysis. Individual risk factors were extracted and pooled hazard ratios (HRs) calculated. A model to predict the time to first relapse based on identified risk factors was tested retrospectively using a cohort of patients with AAV. Results: The review of 2674 abstracts identified 117 papers for full text review, with 16 eligible for inclusion. Pooled HRs were calculated from significant risk factors, including anti-PR3 ANCA positivity [HR 1.69 (95% CI 1.46, 1.94)], cardiovascular involvement [HR 1.78 (95% CI 1.26, 2.53)], creatinine >200 μmol/l (relative to creatinine ≤100) [HR 0.39 (95% CI 0.22, 0.69)] and creatinine 101-200 μmol/l [HR 0.81 (95% CI 0.77, 0.85)]. Using data from 182 AAV patients to validate the model gave a C-statistic of 0.61. Conclusion: Anti-PR3 ANCA positivity, lower serum creatinine and cardiovascular system involvement are all associated with an increased risk of relapse, and a combination of these risk factors can be used to predict the individualised risk of relapse. In order to produce a clinically useful model to stratify risk, we need to identify more risk factors, with a focus on robust biomarkers
Effects of Partial and Complete Ablation of the Slow Pathway on Fast Pathway Properties in Patients with Atrioventricular Nodal Reentrant Tachycardia
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73520/1/j.1540-8167.1994.tb01187.x.pd
Recommendations for exercise adherence measures in musculoskeletal settings : a systematic review and consensus meeting (protocol)
Background: Exercise programmes are frequently advocated for the management of musculoskeletal disorders; however, adherence is an important pre-requisite for their success. The assessment of exercise adherence requires the use of relevant and appropriate measures, but guidance for appropriate assessment does not exist. This research will identify and evaluate the quality and acceptability of all measures used to assess exercise adherence within a musculoskeletal setting, seeking to reach consensus for the most relevant and appropriate measures for application in research and/or clinical practice settings.
Methods/design: There are two key stages to the proposed research. First, a systematic review of the quality and acceptability of measures used to assess exercise adherence in musculoskeletal disorders; second, a consensus meeting. The systematic review will be conducted in two phases and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure a robust methodology. Phase one will identify all measures that have been used to assess exercise adherence in a musculoskeletal setting. Phase two will seek to identify published and unpublished evidence of the measurement and practical properties of identified measures. Study quality will be assessed against the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) guidelines. A shortlist of best quality measures will be produced for consideration during stage two: a meeting of relevant stakeholders in the United Kingdom during which consensus on the most relevant and appropriate measures of exercise adherence for application in research and/or clinical practice settings will be sought.
Discussion: This study will benefit clinicians who seek to evaluate patients’ levels of exercise adherence and those intending to undertake research, service evaluation, or audit relating to exercise adherence in the musculoskeletal field. The findings will impact upon new research studies which aim to understand the factors that predict adherence with exercise and which test different adherence-enhancing interventions. PROSPERO reference: CRD4201300621
Underdeveloped RPE Apical Domain Underlies Lesion Formation in Canine Bestrophinopathies
Canine bestrophinopathy (cBest) is an important translational model for BEST1-associated maculopathies in man that recapitulates the broad spectrum of clinical and molecular disease aspects observed in patients. Both human and canine bestrophinopathies are characterized by focal to multifocal separations of the retina from the RPE. The lesions can be macular or extramacular, and the specific pathomechanism leading to formation of these lesions remains unclear. We used the naturally occurring canine BEST1 model to examine factors that underlie formation of vitelliform lesions and addressed the susceptibility of the macula to its primary detachment in BEST1-linked maculopathies
Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis
The α-proteobacterium Wolbachia is probably the most prevalent, vertically transmitted symbiont on Earth. In contrast with its wide distribution in arthropods, Wolbachia is restricted to one family of animal-parasitic nematodes, the Onchocercidae. This includes filarial pathogens such as Onchocerca volvulus, the cause of human onchocerciasis, or river blindness. The symbiosis between filariae and Wolbachia is obligate, although the basis of this dependency is not fully understood. Previous studies suggested that Wolbachia may provision metabolites (e.g., haem, riboflavin, and nucleotides) and/or contribute to immune defense. Importantly, Wolbachia is restricted to somatic tissues in adult male worms, whereas females also harbor bacteria in the germline. We sought to characterize the nature of the symbiosis between Wolbachia and O. ochengi, a bovine parasite representing the closest relative of O. volvulus. First, we sequenced the complete genome of Wolbachia strain wOo, which revealed an inability to synthesize riboflavin de novo. Using RNA-seq, we also generated endobacterial transcriptomes from male soma and female germline. In the soma, transcripts for membrane transport and respiration were up-regulated, while the gonad exhibited enrichment for DNA replication and translation. The most abundant Wolbachia proteins, as determined by geLC-MS, included ligands for mammalian Toll-like receptors. Enzymes involved in nucleotide synthesis were dominant among metabolism-related proteins, whereas the haem biosynthetic pathway was poorly represented. We conclude that Wolbachia may have a mitochondrion-like function in the soma, generating ATP for its host. Moreover, the abundance of immunogenic proteins in wOo suggests a role in diverting the immune system toward an ineffective antibacterial response
Transfer of learning between unimanual and bimanual rhythmic movement coordination: transfer is a function of the task dynamic.
Under certain conditions, learning can transfer from a trained task to an untrained version of that same task. However, it is as yet unclear what those certain conditions are or why learning transfers when it does. Coordinated rhythmic movement is a valuable model system for investigating transfer because we have a model of the underlying task dynamic that includes perceptual coupling between the limbs being coordinated. The model predicts that (1) coordinated rhythmic movements, both bimanual and unimanual, are organised with respect to relative motion information for relative phase in the coupling function, (2) unimanual is less stable than bimanual coordination because the coupling is unidirectional rather than bidirectional, and (3) learning a new coordination is primarily about learning to perceive and use the relevant information which, with equal perceptual improvement due to training, yields equal transfer of learning from bimanual to unimanual coordination and vice versa [but, given prediction (2), the resulting performance is also conditioned by the intrinsic stability of each task]. In the present study, two groups were trained to produce 90° either unimanually or bimanually, respectively, and tested in respect to learning (namely improved performance in the trained 90° coordination task and improved visual discrimination of 90°) and transfer of learning (to the other, untrained 90° coordination task). Both groups improved in the task condition in which they were trained and in their ability to visually discriminate 90°, and this learning transferred to the untrained condition. When scaled by the relative intrinsic stability of each task, transfer levels were found to be equal. The results are discussed in the context of the perception–action approach to learning and performance
Community ecology of the Middle Miocene primates of La Venta, Colombia: the relationship between ecological diversity, divergence time, and phylogenetic richness
It has been suggested that the degree of ecological diversity that characterizes a primate community correlates positively with both its phylogenetic richness and the time since the members of that community diverged (Fleagle and Reed in Primate communities. Cambridge University Press, New York, pp 92–115, 1999). It is therefore questionable whether or not a community with a relatively recent divergence time but high phylogenetic richness would be as ecologically variable as a community with similar phylogenetic richness but a more distant divergence time. To address this question, the ecological diversity of a fossil primate community from La Venta, Colombia, a Middle Miocene platyrrhine community with phylogenetic diversity comparable with extant platyrrhine communities but a relatively short time since divergence, was compared with that of modern Neotropical primate communities. Shearing quotients and molar lengths, which together are reliable indicators of diet, for both fossil and extant species were plotted against each other to describe the dietary “ecospace” occupied by each community. Community diversity was calculated as the area of the minimum convex polygon encompassing all community members. The diversity of the fossil community was then compared with that of extant communities to test whether the fossil community was less diverse than extant communities while taking phylogenetic richness into account. Results indicate that the La Ventan community was not significantly less ecologically diverse than modern communities, supporting the idea that ecological diversification occurred along with phylogenetic diversification early in platyrrhine evolution
- …