5,724 research outputs found

    Generalized Gauge Theories and Weinberg-Salam Model with Dirac-K\"ahler Fermions

    Full text link
    We extend previously proposed generalized gauge theory formulation of Chern-Simons type and topological Yang-Mills type actions into Yang-Mills type actions. We formulate gauge fields and Dirac-K\"ahler matter fermions by all degrees of differential forms. The simplest version of the model which includes only zero and one form gauge fields accommodated with the graded Lie algebra of SU(21)SU(2|1) supergroup leads Weinberg-Salam model. Thus the Weinberg-Salam model formulated by noncommutative geometry is a particular example of the present formulation.Comment: 33 pages, LaTe

    N=2 Supersymmetric Model with Dirac-Kahler Fermions from Generalized Gauge Theory in Two Dimensions

    Full text link
    We investigate the generalized gauge theory which has been proposed previously and show that in two dimensions the instanton gauge fixing of the generalized topological Yang-Mills action leads to a twisted N=2 supersymmetric action. We have found that the R-symmetry of N=2 supersymmetry can be identified with the flavour symmetry of Dirac-Kahler fermion formulation. Thus the procedure of twist allows topological ghost fields to be interpreted as the Dirac-Kahler matter fermions.Comment: 22 pages, LaTe

    Photoinduced Magnetization in a Thin Fe-CN-Co Film

    Full text link
    The magnetization of a thin Fe-Co cyanide film has been investigated from 5 K to 300 K and in fields up to 500 G. Upon illumination with visible light, the magnetization of the film rapidly increases. The original cluster glass behavior is further developed in the photoinduced state and shows substantial changes in critical temperature and freezing temperature.Comment: 2 pages, 2 figures, 1 table, International Conference on Magnetism 200

    Microscopic analysis of the microscopic reversibility in quantum systems

    Full text link
    We investigate the robustness of the microscopic reversibility in open quantum systems which is discussed by Monnai [arXiv:1106.1982 (2011)]. We derive an exact relation between the forward transition probability and the reversed transition probability in the case of a general measurement basis. We show that the microscopic reversibility acquires some corrections in general and discuss the physical meaning of the corrections. Under certain processes, some of the correction terms vanish and we numerically confirmed that the remaining correction term becomes negligible; the microscopic reversibility almost holds even when the local system cannot be regarded as macroscopic.Comment: 12 pages, 10 figure

    Note on Dirac--K\"ahler massless fields

    Full text link
    We obtain the canonical and symmetrical Belinfante energy-momentum tensors of Dirac--K\"{a}hler's fields. It is shown that the traces of the energy-momentum tensors are not equal to zero. We find the canonical and Belinfante dilatation currents which are not conserved, but a new conserved dilatation current is obtained. It is pointed out that the conformal symmetry is broken. The canonical quantization is performed and the propagator of the massless fields in the first-order formalism is found.Comment: 16 pages, minor corrections in the text, published versio

    Frustrated Hubbard ladders and superconductivity in κ\kappa-BEDT-TTF organic compounds

    Full text link
    Half-filled two-leg Hubbard ladders have spin-gapped short-range antiferromagnetic correlations while three-leg ladders have power law antoferromagnetic correlations, and both systems have d_{x^2-y^2}-power law pairing correlations when they are doped. Thus these ladders exhibit some of the phenomenology seen in the layered cuprates. Here we report results for half-filled frustrated Hubbard ladders, based upon ladder segments taken from a tight-binding model of kappa-BEDT-TTF. Although these ladders are half-filled, varying the degree of frustration can drive them across an insulator-metal transition. We suggest that the spin, charge and pairing correlations of these frustrated ladders near the insulator-metal transition provide support for the notion that kappa-BEDT-TTF is a strongly correlated superconductor

    Spin Fluctuation-Induced Superconductivity in Organic Compounds

    Full text link
    Spin fluctuation-induced superconductivity in two-dimensional organic compounds such as \kappa-(ET)_2-X is investigated by using a simplified dimer Hubbard model with right-angled isosceles triangular lattice (transfer matrices -\tau, -\tau^\prime). The dynamical susceptiblity and the self-energy are calculated self-consistently within the fluctuation exchange approximation and the value for T_c as obtained by solving the linearized Eliashberg-type equations is in good agreement with experiment. The pairing symmetry is of d_{x^2-y^2} type. The calculated (U/\tau)-dependence of T_c compares qualitatively well with the observed pressure dependence of T_c. Varying the value for \tau^\prime/\tau from 0 to 1 we interpolate between the square lattice and the regular triangular lattice and find firstly that values of T_c for \kappa-(ET)_2-X and cuprates scale well and secondly that T_c tends to decrease with increasing \tau^\prime/\tau and no superconductivity is found for \tau^\prime/\tau=1, the regular triangular lattice.Comment: 4 pages, 6 eps figures, uses jpsj.st

    A New Look at the Axial Anomaly in Lattice QED with Wilson Fermions

    Get PDF
    By carrying out a systematic expansion of Feynman integrals in the lattice spacing, we show that the axial anomaly in the U(1) lattice gauge theory with Wilson fermions, as determined in one-loop order from an irrelevant lattice operator in the Ward identity, must necessarily be identical to that computed from the dimensionally regulated continuum Feynman integrals for the triangle diagrams.Comment: 1 figure, LaTeX, 18 page

    Evidence for structural and electronic instabilities at intermediate temperatures in κ\kappa-(BEDT-TTF)2_{2}X for X=Cu[N(CN)2_{2}]Cl, Cu[N(CN)2_{2}]Br and Cu(NCS)2_{2}: Implications for the phase diagram of these quasi-2D organic superconductors

    Full text link
    We present high-resolution measurements of the coefficient of thermal expansion α(T)=lnl(T)/T\alpha (T)=\partial \ln l(T)/\partial T of the quasi-twodimensional (quasi-2D) salts κ\kappa-(BEDT-TTF)2_2X with X = Cu(NCS)2_2, Cu[N(CN)2_2]Br and Cu[N(CN)2_2]Cl. At intermediate temperatures (B), distinct anomalies reminiscent of second-order phase transitions have been found at T=38T^\ast = 38 K and 45 K for the superconducting X = Cu(NCS)2_2 and Cu[N(CN)2_2]Br salts, respectively. Most interestingly, we find that the signs of the uniaxial pressure coefficients of TT^\ast are strictly anticorrelated with those of TcT_c. We propose that TT^\ast marks the transition to a spin-density-wave (SDW) state forming on minor, quasi-1D parts of the Fermi surface. Our results are compatible with two competing order parameters that form on disjunct portions of the Fermi surface. At elevated temperatures (C), all compounds show α(T)\alpha (T) anomalies that can be identified with a kinetic, glass-like transition where, below a characteristic temperature TgT_g, disorder in the orientational degrees of freedom of the terminal ethylene groups becomes frozen in. We argue that the degree of disorder increases on going from the X = Cu(NCS)2_2 to Cu[N(CN)2_2]Br and the Cu[N(CN)2_2]Cl salt. Our results provide a natural explanation for the unusual time- and cooling-rate dependencies of the ground-state properties in the hydrogenated and deuterated Cu[N(CN)2_2]Br salts reported in the literature.Comment: 22 pages, 7 figure
    corecore