12,302 research outputs found
Energy-momentum and angular momentum densities in gauge theories of gravity
In the \bar{\mbox{\rm Poincar\'{e}}} gauge theory of gravity, which has
been formulated on the basis of a principal fiber bundle over the space-time
manifold having the covering group of the proper orthochronous Poincar\'{e}
group as the structure group, we examine the tensorial properties of the
dynamical energy-momentum density and the ` `
spin" angular momentum density of the
gravitational field. They are both space-time vector densities, and transform
as tensors under {\em global} - transformations. Under {\em local}
internal translation, is invariant, while
transforms inhomogeneously. The dynamical
energy-momentum density and the ` ` spin"
angular momentum density of the matter field
are also examined, and they are known to be space-time vector densities and to
obey tensorial transformation rules under internal \bar{\mbox{\rm
Poincar\'{e}}} gauge transformations. The corresponding discussions in
extended new general relativity which is obtained as a teleparallel limit of
\bar{\mbox{\rm Poincar\'{e}}} gauge theory are also given, and
energy-momentum and ` ` spin" angular momentum densities are known to be well
behaved. Namely, they are all space-time vector densities, etc. In both
theories, integrations of these densities on a space-like surface give the
total energy-momentum and {\em total} (={\em spin}+{\em orbital}) angular
momentum for asymptotically flat space-time. The tensorial properties of
canonical energy-momentum and ` ` extended orbital angular momentum" densities
are also examined.Comment: 18 page
First-principles study on field evaporation for silicon atom on Si(001) surface
The simulations of field-evaporation processes for silicon atoms on various
Si(001) surfaces are implemented using the first-principles calculations based
on the real-space finite-difference method. We find that the atoms which locate
on atomically flat Si(001) surfaces and at step edges are easily removed by
applying external electric field, and the threshold value of the external
electric field for evaporation of atoms on atomically flat Si(001) surfaces,
which is predicted between 3.0 and 3.5 V/\AA, is in agreement with the
experimental data of 3.8 V/\AA. In this situation, the local field around an
evaporating atom does not play a crucial role. This result is instead
interpreted in terms of the bond strength between an evaporating atom and
surface.Comment: 5 pages and 4 figure
Generalized Equivalence Principle in Extended New General Relativity
In extended new general relativity, which is formulated as a reduction of
gauge theory of gravity whose gauge group is the covering
group of the Poincar\'e group, we study the problem of whether the total
energy-momentum, total angular momentum and total charge are equal to the
corresponding quantities of the gravitational source. We examine this for
charged axi-symmetric solutions of gravitational field equations. Our main
concern is the restriction on the asymptotic form of the gravitational field
variables imposed by the requirement that physical quantities of the total
system are equivalent to the corresponding quantities of the charged rotating
source body. This requirement can be regarded as an equivalence principle in a
generalized sense.Comment: 35 page
Analysis of (K^-,K^+) inclusive spectrum with semiclassical distorted wave model
The inclusive K^+ momentum spectrum in the 12C(K^-,K^+) reaction is
calculated by the semiclassical distorted wave (SCDW) model, including the
transition to the \Xi^- bound state. The calculated spectra with the strength
of the \Xi^--nucleus potential -50, -20, and +10 MeV are compared with the
experimental data measured at KEK with p_{K^-}=1.65 GeV/c. The shape of the
spectrum is reproduced by the calculation. Though the inclusive spectrum
changes systematically depending on the potential strength, it is not possible
to obtain a constraint on the potential from the present data. The calculated
spectrum is found to have strong emission-angle dependence. We also investigate
the incident K^- momentum dependence of the spectrum to see the effect of the
Fermi motion of the target nucleons which is explicitly treated in the SCDW
method.Comment: 7 pages, 5 figure
Poincar\'{e} gauge theory of gravity
A Poincar\'{e} gauge theory of (2+1)-dimensional gravity is developed.
Fundamental gravitational field variables are dreibein fields and Lorentz gauge
potentials, and the theory is underlain with the Riemann-Cartan space-time. The
most general gravitational Lagrangian density, which is at most quadratic in
curvature and torsion tensors and invariant under local Lorentz transformations
and under general coordinate transformations, is given. Gravitational field
equations are studied in detail, and solutions of the equations for weak
gravitational fields are examined for the case with a static, \lq \lq spin"less
point like source. We find, among other things, the following: (1)Solutions of
the vacuum Einstein equation satisfy gravitational field equations in the
vacuum in this theory. (2)For a class of the parameters in the gravitational
Lagrangian density, the torsion is \lq \lq frozen" at the place where \lq \lq
spin" density of the source field is not vanishing. In this case, the field
equation actually agrees with the Einstein equation, when the source field is
\lq \lq spin"less. (3)A teleparallel theory developed in a previous paper is
\lq \lq included as a solution" in a limiting case. (4)A Newtonian limit is
obtainable, if the parameters in the Lagrangian density satisfy certain
conditions.Comment: 27pages, RevTeX, OCU-PHYS-15
Asymmetric Non-Abelian Orbifolds and Model Building
The rules for the free fermionic string model construction are extended to
include general non-abelian orbifold constructions that go beyond the real
fermionic approach. This generalization is also applied to the asymmetric
orbifold rules recently introduced. These non-abelian orbifold rules are quite
easy to use. Examples are given to illustrate their applications.Comment: 30 pages, Revtex 3.
Analysis of dynamic characteristics of fluid force induced by labyrinth seal
Flow patterns of the labyrinth seal are experimentally investigated for making a mathematical model of labyrinth seal and to obtain the flow induced force of the seal. First, the flow patterns in the labyrinth chamber are studied on the circumferential flow using bubble and on the cross section of the seal chamber using aluminum powder as tracers. And next, the fluid force and its phase angle are obtained from the measured pressure distribution in the chamber and the fluid force coefficients are derived from the fluid force and the phase angle. Those are similar to the expression of oil film coefficients. As a result, it is found that the vortices exist in the labyrinth chambers and its center moves up and down periodically. The pressure drop is biggest in the first stage of chambers and next in the last stage of chambers
- …