4,367 research outputs found
Two-dimensional macroscopic quantum dynamics in YBCO Josephson junctions
We theoretically study classical thermal activation (TA) and macroscopic
quantum tunneling (MQT) for a YBCO Josephson junction coupled with an LC
circuit. The TA and MQT escape rate are calculated by taking into account the
two-dimensional nature of the classical and quantum phase dynamics. We find
that the MQT escape rate is largely suppressed by the coupling to the LC
circuit. On the other hand, this coupling leads to the slight reduction of the
TA escape rate. These results are relevant for the interpretation of a recent
experiment on the MQT and TA phenomena in YBCO bi-epitaxial Josephson
junctions.Comment: 9 pages, 2 figure
Effect of zero energy bound states on macroscopic quantum tunneling in high-Tc superconductor junctions
The macroscopic quantum tunneling (MQT) in the current biased high-Tc
superconductor Josephson junctions and the effect of the zero energy bound
states (ZES) on the MQT are theoretically investigated. We obtained the
analytical formula of the MQT rate and showed that the presence of the ZES at
the normal/superconductor interface leads to a strong Ohmic quasiparticle
dissipation. Therefore, the MQT rate is noticeably inhibited in compared with
the c-axis junctions in which the ZES are completely absent.Comment: 4 pages, 1 figure, comment and reference about recent experiment
adde
Theory of Macroscopic Quantum Tunneling in High-T_c c-Axis Josephson Junctions
We study macroscopic quantum tunneling (MQT) in c-axis twist Josephson
junctions made of high-T_c superconductors in order to clarify the influence of
the anisotropic order parameter symmetry (OPS) on MQT. The dependence of the
MQT rate on the twist angle about the c-axis is calculated by using
the functional integral and the bounce method. Due to the d-wave OPS, the
dependence of standard deviation of the switching current distribution
and the crossover temperature from thermal activation to MQT are found to be
given by and , respectively. We also show
that a dissipative effect resulting from the nodal quasiparticle excitation on
MQT is negligibly small, which is consistent with recent MQT experiments using
BiSrCaCuO intrinsic junctions. These results
indicate that MQT in c-axis twist junctions becomes a useful experimental tool
for testing the OPS of high-T_c materials at low temperature, and suggest high
potential of such junctions for qubit applications.Comment: 15 pages, 8 figures, 1 tabl
Macroscopic quantum tunneling and quasiparticle-tunneling blockade effect in s-wave/d-wave hybrid junctions
We have theoretically investigated macroscopic quantum tunneling (MQT) and
the influence of nodal quasiparticles and zero energy bound states (ZES) on MQT
in s-wave/ d-wave hybrid Josephson junctions. In contrast to d-wave/d-wave
junctions, the low-energy quasiparticle dissipation resulting from nodal
quasiparticles and ZES is suppressed due to a quasiparticle-tunneling blockade
effect in an isotropic s-wave superconductor. Therefore, the inherent
dissipation in these junctions is found to be very weak. We have also
investigated MQT in a realistic s-wave/d-wave (Nb/Au/YBCO) junction in which
Ohmic dissipation in a shunt resistance is stronger than the inherent
dissipation and find that MQT is observable within the current experimental
technology. This result suggests high potential of s-wave/d-wave hybrid
junctions for applications in quantum information devices.Comment: 4 pages, 3 figure
Quasi-Superradiant Soliton State of Matter in Quantum Metamaterials
Strong interaction of a system of quantum emitters (e.g., two-level atoms)
with electromagnetic field induces specific correlations in the system
accompanied by a drastic insrease of emitted radiation (superradiation or
superfluorescence). Despite the fact that since its prediction this phenomenon
was subject to a vigorous experimental and theoretical research, there remain
open question, in particular, concerning the possibility of a first order phase
transition to the superradiant state from the vacuum state. In systems of
natural and charge-based artificial atome this transition is prohibited by
"no-go" theorems. Here we demonstrate numerically a similar transition in a
one-dimensional quantum metamaterial - a chain of artificial atoms (qubits)
strongly interacting with classical electromagnetic fields in a transmission
line. The system switches from vacuum state with zero classical electromagnetic
fields and all qubits being in the ground state to the quasi-superradiant (QS)
phase with one or several magnetic solitons and finite average occupation of
qubit excited states along the transmission line. A quantum metamaterial in the
QS phase circumvents the "no-go" restrictions by considerably decreasing its
total energy relative to the vacuum state by exciting nonlinear electromagnetic
solitons with many nonlinearly coupled electromagnetic modes in the presence of
external magnetic field.Comment: 6 pages, 4 figure
Large Polarization Degree of Comet 2P/Encke Continuum Based on Spectropolarimetric Signals During Its 2017 Apparition
Spectropolarimetry is a powerful technique for investigating the physical
properties of gas and solid materials in cometary comae without mutual
contamination, but there have been few spectropolarimetric studies to extract
each component. We attempt to derive the continuum polarization degree of comet
2P/Encke, free from influence of molecular emissions. The target is unique in
that it has an orbit dynamically decoupled from Jupiter like main-belt
asteroids, while ejecting gas and dust like ordinary comets. We observed the
comet using the Higashi-Hiroshima Optical and Near-Infrared Camera attached to
the Cassegrain focus of the 150-cm Kanata telescope on UT 2017 February 21 when
the comet was at the solar phase angle of 75.7 deg. We find that the continuum
polarization degree with respect to the scattering plane is 33.8+/-2.7 % at the
effective wavelength of 0.815 um, which is significantly higher than those of
cometary dust in a high-Pmax group at similar phase angles. Assuming that an
ensemble polarimetric response of 2P/Encke's dust as a function of phase angle
is morphologically similar with those of other comets, its maximum polarization
degree is estimated to > 40 % at the phase angle of ~100 deg. In addition, we
obtain the polarization degrees of the C2 swan bands (0.51-0.56 um), the NH2
alpha bands (0.62-0.69 um) and the CN-red system (0.78-0.94 um) in a range of
3-19 %, which depend on the molecular species and rotational quantum numbers of
each branch. The polarization vector aligns nearly perpendicularly to the
scattering plane with the average of 0.4 deg over a wavelength range of
0.50-0.97 um. From the observational evidence, we conjecture that the large
polarization degree of 2P/Encke would be attributable to a dominance of large
dust particles around the nucleus, which have remained after frequent
perihelion passages near the Sun.Comment: 9 pages, 4 figures, accepted for publication in Astronomy &
Astrophysic
- …