4 research outputs found

    Tumor-Induced T Cell Polarization by Schwann Cells

    No full text
    Nerve-cancer crosstalk resulting in either tumor neurogenesis or intratumoral neurodegeneration is critically controlled by Schwann cells, the principal glial cells of the peripheral nervous system. Though the direct stimulating effect of Schwann cells on malignant cell proliferation, motility, epithelial–mesenchymal transition, and the formation of metastases have been intensively investigated, the ability of Schwann cells to affect the effector and regulatory immune cells in the tumor environment is significantly less studied. Here, we demonstrated that tumor cells could stimulate Schwann cells to produce high levels of prostaglandin E, which could be blocked by COX-2 inhibitors. This effect was mediated by tumor-derived TGF-β as neutralization of this cytokine in the tumor-conditioned medium completely blocked the inducible prostaglandin E production by Schwann cells. Similar protective effects were also induced by the Schwann cell pretreatment with TGF-βR1/ALK4/5/7 and MAPK/ERK kinase inhibitors of the canonical and non-canonical TGF-β signaling pathways, respectively. Furthermore, prostaglandin E derived from tumor-activated Schwann cells blocked the proliferation of CD3/CD28-activated T cells and upregulated the expression of CD73 and PD-1 on both CD4+ and CD8+ T cells, suggesting T cell polarization to the exhausted phenotype. This new pathway of tumor-induced T cell inhibition via the activation of neuroglial cells represents new evidence of the importance of nerve–cancer crosstalk in controlling tumor development and progression. A better understanding of the tumor-neuro-immune axis supports the development of efficient targets for harnessing this axis and improving the efficacy of cancer therapy

    Interaction of novel proteins, centrin4 and protein of centriole in Leishmania parasite and their effects on the parasite growth

    No full text
    International audienceCentrins are cytoskeletal proteins associated with the centrosomes or basal bodies in the eukaryotes. We previously reported the involvement of Centrin 1-3 proteins in cell division in the protozoan parasites Leishmania donovani and Trypanosoma brucei. Centrin4 and 5, unique to such parasites, had never been characterized in Leishmania parasite. In the current study, we addressed the function of centrin4 (LdCen4) in Leishmania. By dominant-negative study, the episomal expression of C-terminal truncated LdCen4 in the parasite reduced the parasite growth. LdCen4 double allele gene deletion by either homologous recombination or CRISPR-Cas9 was not successful in L. donovani. However, CRISPR-Cas9-based deletion of the homologous gene was possible in L. mexicana, which attenuated the parasite growth in vitro, but not ex vivo in the macrophages. LdCen4 also interacts with endogenous and overexpressed LdPOC protein, a homolog of centrin reacting human POC (protein of centriole) in a calcium sensitive manner. LdCen4 and LdPOC binding has also been confirmed through in silico analysis by protein structural docking and validated by co-immunoprecipitation. By immunofluorescence studies, we found that both the proteins share a common localization at the basal bodies. Thus, for the first time, this article describes novel centrin4 and its binding protein in the protozoan parasites

    Melanoma-associated repair-like Schwann cells suppress anti-tumor T-cells via 12/15-LOX/COX2-associated eicosanoid production

    No full text
    ABSTRACTPeripheral glia, specifically the Schwann cells (SCs), have been implicated in the formation of the tumor microenvironment (TME) and in cancer progression. However, in vivo and ex vivo analyses of how cancers reprogram SC functions in different organs of tumor-bearing mice are lacking. We generated Plp1-CreERT/tdTomato mice which harbor fluorescently labeled myelinated and non-myelin forming SCs. We show that this model enables the isolation of the SCs with high purity from the skin and multiple other organs. We used this model to study phenotypic and functional reprogramming of the SCs in the skin adjacent to melanoma tumors. Transcriptomic analyses of the peritumoral skin SCs versus skin SCs from tumor-free mice revealed that the former existed in a repair-like state typically activated during nerve and tissue injury. Peritumoral skin SCs also downregulated pro-inflammatory genes and pathways related to protective anti-tumor responses. In vivo and ex vivo functional assays confirmed immunosuppressive activities of the peritumoral skin SCs. Specifically, melanoma-reprogrammed SCs upregulated 12/15-lipoxygenase (12/15-LOX) and cyclooxygenase (COX)-2, and increased production of anti-inflammatory polyunsaturated fatty acid (PUFA) metabolites prostaglandin E2 (PGE2) and lipoxins A4/B4. Inhibition of 12/15-LOX or COX2 in SCs, or EP4 receptor on lymphocytes reversed SC-dependent suppression of anti-tumor T-cell activation. Therefore, SCs within the skin adjacent to melanoma tumors demonstrate functional switching to repair-like immunosuppressive cells with dysregulated lipid oxidation. Our study suggests the involvement of the melanoma-associated repair-like peritumoral SCs in the modulation of locoregional and systemic anti-tumor immune responses

    Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012

    No full text
    corecore