16 research outputs found
Raman Signatures of Strong Kitaev Exchange Correlations in (NaLi)IrO : Experiments and Theory
Inelastic light scattering studies on single crystals of
(NaLi)IrO ( and ) show a polarization
independent broad band at ~2750 cm with a large band-width ~cm. For NaIrO the broad band is seen for temperatures ~K and persists inside the magnetically ordered state. For Li doped
samples, the intensity of this mode increases, shifts to lower wave-numbers and
persists to higher temperatures. Such a mode has recently been predicted
(Knolle et.al.) as a signature of the Kitaev spin liquid. We assign the
observation of the broad band to be a signature of strong Kitaev-exchange
correlations. The fact that the broad band persists even inside the
magnetically ordered state suggests that dynamically fluctuating moments
survive even below . This is further supported by our mean field
calculations. The Raman response calculated in mean field theory shows that the
broad band predicted for the spin liquid state survives in the magnetically
ordered state near the zigzag-spin liquid phase boundary. A comparison with the
theoretical model gives an estimate of the Kitaev exchange interaction
parameter to be ~meV.Comment: 14pages 4 figure
Direct Evidence for Dominant Bond-directional Interactions in a Honeycomb Lattice Iridate Na2IrO3
Heisenberg interactions are ubiquitous in magnetic materials and have been
prevailing in modeling and designing quantum magnets. Bond-directional
interactions offer a novel alternative to Heisenberg exchange and provide the
building blocks of the Kitaev model, which has a quantum spin liquid (QSL) as
its exact ground state. Honeycomb iridates, A2IrO3 (A=Na,Li), offer potential
realizations of the Kitaev model, and their reported magnetic behaviors may be
interpreted within the Kitaev framework. However, the extent of their relevance
to the Kitaev model remains unclear, as evidence for bond-directional
interactions remains indirect or conjectural. Here, we present direct evidence
for dominant bond-directional interactions in antiferromagnetic Na2IrO3 and
show that they lead to strong magnetic frustration. Diffuse magnetic x-ray
scattering reveals broken spin-rotational symmetry even above Neel temperature,
with the three spin components exhibiting nano-scale correlations along
distinct crystallographic directions. This spin-space and real-space
entanglement directly manifests the bond-directional interactions, provides the
missing link to Kitaev physics in honeycomb iridates, and establishes a new
design strategy toward frustrated magnetism.Comment: Nature Physics, accepted (2015