27 research outputs found

    Enhanced Volts-per-Hertz Sensorless Starting of Permanent Magnet Motor with Heavy Loads in Long-Cable Subsea Applications

    No full text
    Permanent magnet (PM) motors are gaining prominence in subsea applications such as drilling, pumping, and boosting for oil and natural gas extraction. These motors are gradually replacing traditional induction motors. However, starting and operating PM motors at low speeds under heavy loads poses significant challenges. This is because of unknown initial rotor positions and resistive voltage drops due to the presence of a sinewave filter, transformer, and long cable. An unknown rotor position may result in temporary reverse speed, which may cause a loss of synchronism; therefore, initial rotor position estimation is preferable. Additionally, addressing the voltage drop issue requires careful voltage compensation to avoid transformer core saturation. In this paper, an enhanced V/Hz starting of a PM motor is proposed with initial position detection (IPD) and voltage compensation to start the motor reliably with a heavy load. The proposed control method is verified with controller hardware in the loop (C-HIL) real-time simulation using a Typhoon HIL-604 emulator and a Texas Instruments TMS320F28335 digital signal processor (DSP) control card

    Energy efficient home with price sensitive stochastically programmable TCAs

    No full text
    Introduction of dynamic pricing in present retail market, considerably affects customers with an increased cost of energy consumption. Therefore, customers are enforced to control their loads according to price variation. This paper proposes a new technique of Home Energy Management, which helps customers to minimize their cost of energy consumption by appropriately controlling their loads. Thermostatically Controllable Appliances (TCAs) such as air conditioner and water heater are focused in this study, as they consume more than 50% of the total household energy consumption. The control process includes stochastic dynamic programming, which incorporated uncertainties in price and demand variation. It leads to an accurate selection of appliance settings. It is followed by a real time control of selected appliances with its optimal settings. Temperature set points of TCAs are adjusted based on price droop which is a reflection of actual cost of energy consumption. Customer satisfaction is maintained within limits using constraint optimization. It is showed that considerable energy savings is achieved

    Comparison of EV Fast Charging Protocols and Impact of Sinusoidal Half-Wave Fast Charging Methods on Lithium-Ion Cells

    No full text
    In electric vehicle fast charging systems, it is important to minimize the effect of fast charging on the grid and it is also important to operate the charging system at high efficiencies. In order to achieve these objectives, in this paper, a sinusoidal half-wave DC current charging protocol and a sinusoidal half-wave pulsed current charging protocol are proposed for the fast charging of Li-ion batteries. A detailed procedure is presented for implementing the following proposed methods: (a) a pre-defined half-sine wave current function and (b) a pulsed half-sine wave current method. Unlike the conventional full-wave sinusoidal ripple current charging protocols, the proposed study does not utilize any sinusoidal full-wave ripple. The performance of these new charging methods on Ni-Co-Al-type Li-cells is studied and compared with the existing constant current and positive pulsed current charging protocols, which have been discussed in the existing literature. In addition, the changes in the electrochemical impedance spectrograph of each cell are examined to study the effects of the applied charging methods on the internal resistance of the Li cell. Finally, the test results are presented for 250 life cycles of charging at 2C (C: charging rate) and the degradation in cell capacities are compared among the four different methods for the Ni-Co-Al-type Li cell

    DC-Link Voltage Stability Analysis of Grid-Tied Converters Using DC Impedance Models

    No full text
    With the integration of renewable energy sources into the power grid, a number of power electronic converters need to be connected together in parallel. Due to this interconnection among the power converters with a common DC bus, the equivalent impedance of the DC network, i.e., DC network impedance (DCNI) of these parallel converters, may vary and can cause oscillations in the DC link voltage (DCLV). In the literature, impedance models of grid-tied converters (GCs) based on the AC side are well reported without including these variations in DCNI. In addition, the dynamics of a phase-locked loop (PLL) play a significant role in GC system stability. To evaluate these stability issues, this paper proposes small signal impedance models viewing from the DC side of a three-phase GC operating under different control modes considering the PLL dynamics and the DCNI variations. Using the proposed DC impedance models (DCIM), DCLV stability analysis is evaluated for a GC. It is verified through bode plots that the interaction between the proposed DCIM and DCNI leads to unstable operation of the closed-loop converter near the PLL bandwidth when the phase difference between DCIM and DCNI is more than 180 degrees. Finally, the analytically developed models are validated using hardware in-the-loop (HIL) testing

    DC-Link Voltage Stability Analysis of Grid-Tied Converters Using DC Impedance Models

    No full text
    With the integration of renewable energy sources into the power grid, a number of power electronic converters need to be connected together in parallel. Due to this interconnection among the power converters with a common DC bus, the equivalent impedance of the DC network, i.e., DC network impedance (DCNI) of these parallel converters, may vary and can cause oscillations in the DC link voltage (DCLV). In the literature, impedance models of grid-tied converters (GCs) based on the AC side are well reported without including these variations in DCNI. In addition, the dynamics of a phase-locked loop (PLL) play a significant role in GC system stability. To evaluate these stability issues, this paper proposes small signal impedance models viewing from the DC side of a three-phase GC operating under different control modes considering the PLL dynamics and the DCNI variations. Using the proposed DC impedance models (DCIM), DCLV stability analysis is evaluated for a GC. It is verified through bode plots that the interaction between the proposed DCIM and DCNI leads to unstable operation of the closed-loop converter near the PLL bandwidth when the phase difference between DCIM and DCNI is more than 180 degrees. Finally, the analytically developed models are validated using hardware in-the-loop (HIL) testing

    Analysis and mitigation of voltage measurement errors for three-phase parallel voltage source inverters

    No full text
    In islanded microgrids, distributed generations (DGs) have been increasingly employed through voltage source inverters (VSIs). When multiple VSIs operate in parallel, it is important to properly share the load power among them. This paper reveals that voltage measurement errors may deteriorate the power-sharing performance by injecting both positive- and negative-sequence circulating currents. To solve this problem, a combined feedforward and feedback voltage control scheme is proposed. Specifically, the feedforward control is utilized to attenuate the negative impact caused by voltage measurement errors, while the feedback control is adopted for the harmonic mitigation. One salient advantage is that the proposed control scheme is fully decentralized and hence does not require any communications among DGs. Finally, Hardware-in-loop (HIL) simulation results are provided for verification.Accepted versio
    corecore