2 research outputs found

    Curious Case of Positive Current Collectors: Corrosion and Passivation at High Temperature

    No full text
    In the evaluation of compatibility of different components of cell for high-energy and extreme-conditions applications, the highly focused are positive and negative electrodes and their interaction with electrolyte. However, for high-temperature application, the other components are also of significant influence and contribute toward the total health of battery. In present study, we have investigated the behavior of aluminum, the most common current collector for positive electrode materials for its electrochemical and temperature stability. For electrochemical stability, different electrolytes, organic and room temperature ionic liquids with varying Li salts (LiTFSI, LiFSI), are investigated. The combination of electrochemical and spectroscopic investigations reflects the varying mechanism of passivation at room and high temperature, as different compositions of decomposed complexes are found at the surface of metals

    Auger Electrons as Probes for Composite Micro- and Nanostructured Materials: Application to Solid Electrolyte Interphases in Graphite and Silicon-Graphite Electrodes

    No full text
    In this study, Auger electron spectroscopy (AES) combined with ion sputtering depth profiling, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) have been used in a complementary fashion to examine chemical and microstructural changes in graphite (Gr) and silicon/graphite (Si/Gr) blends contained in the negative electrodes of lithium-ion cells. We demonstrate how AES depth profiling can be used to characterize morphology of the solid electrolyte interphase (SEI) deposits in such heterogeneous media, complementing well-established methods, such as XPS and SEM. In this way we demonstrate that the SEI does not consist of uniformly thick layers on the graphite and silicon; the thickness of the SEI layers in cycle life aged electrodes follows an exponential distribution with a mean of ca. 13 nm for the graphite and ca. 20–25 nm for the silicon nanoparticles (with a crystalline core of 50–70 nm in diameter). A “sticky-sphere” model, in which Si nanoparticles are covered with a layer of polymer binder (that is replaced by the SEI during cycling) of variable thickness, is introduced to account for the features observed
    corecore