111 research outputs found

    Electrosensory Frequency and Intensity Discrimination in the Wave-Type Electric Fish Eigenmannia

    Get PDF
    Eigenmannia's frequency and intensity discrimination thresholds were determined for a range of seven frequencies (50-1700Hz), centered on a fish's individual discharge frequency, using a conditioned go/no-go paradigm. The threshold criterion was '50% correct choices' (of the rewarded stimulus, S+, over the unrewarded stimulus, S—); this was validated by testing for statistically significantly shorter response latencies for the S+ compared with the S— stimulus. The stimuli consisted of sine wave bursts presented for up to 20 s, repeated at 2 s"1 (rise and fall times of an individual burst, 50 ms; holding time, 250 ms; silence, 150ms). When testing for frequency discrimination, the sine wave bursts alternated in frequency (A/); for intensity discrimination, every other sine wave burst was of increased intensity (A/). The reference stimulus intensity was 30 dB with reference to a fish's individual absolute threshold for a continuous sine wave at that frequency, previously determined using a conditioned go response. Sensory discrimination was best close to a fish's individual discharge frequency. At 30 dB sensation level, fish discriminated frequency differences as small as 0.52 Hz (0.60 and 0.79 Hz in two other individuals) and intensity differences as small as 0.56dB (1 dB in two other fish). At stimulus frequencies different from a fish's discharge frequency, Eigenmannia's frequency discrimination declined at lower frequencies at a rate of up to 1 Hz octave"1, and at higher frequencies at a rate of up to 3 Hz octave"1. For Eigenmannia's intensity discrimination a similar loss was observed: at frequencies lower than a fish's discharge frequency, intensity discrimination thresholds rose at a rate of less than 1 dB octave" *, while the rate was below 2 dB octave"1 for higher frequencies. Compared with other acoustico-lateral senses in lower vertebrates, Eigenmannia's electrosensory frequency and intensity discrimination is unusually high, in the range of that known for audition in the most sensitive higher vertebrates with a cochlea (for example, human). This emphasizes Eigenmannia's specialized 'active' electrosensory system, which detects the presence of a stimulus field as the modulation of a fish's own 'carrier' signal in amplitude and phase (beat analysis), as opposed to 'passive' sensory systems, which must deal with unpredictable signals from the environment as they occur

    Polyunsaturated fatty acids in the treatment of attention deficit hyperactivity disorder

    Get PDF
    Background: Attention deficit/hyperactivity disorder (ADHD) is one of the most common behavioral disorders in children. Insufficient dietary intake of long-chain polyunsaturated fatty acids (LC-PUFAs) has been suggested to have an impact on the development of symptoms of ADHD in children. Individuals with ADHD have been demonstrated to have significantly reduced blood concentrations of PUFAs and, in particular, reduced levels of omega-3 (n-3) PUFAs. These findings suggest that PUFA supplementation may reduce the attention and behavior problems associated with ADHD. Objective: To provide an overview of the efficacy of dietary LC-PUFA supplementation in the treatment of ADHD. Methods: Literature published up until December 2013 on the effects of n-3 PUFA supplementation on ADHD symptoms was obtained using a PubMed search and critically reviewed. Results: Dietary PUFA supplementation appears to have beneficial effects on ADHD symptoms although these effects are small. The clinical relevance of these observations remains to be determined. Conclusion: There is only limited support for the efficacy of PUFA supplementation for the core symptoms of ADHD. Given the small effect sizes regarding PUFA supplementation, it may not be a sufficient therapy for a majority of patients with ADHD

    Maximum in the Middle: Nonlinear Response of Microbial Plankton to Ultraviolet Radiation and Phosphorus

    Get PDF
    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (<20 days) acute development following a noticeable unimodal response to P enrichment, which peaked at intermediate P-enrichment levels and, unexpectedly, was more accentuated under ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition) in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.This research was supported by Junta de Andalucía (Excelencia P07-CVI-02598 to PC, and P09-RNM-5376 to JMMS), the Spanish Ministries of Medio Ambiente, Rural y Marino (PN2009/067 to PC) and Ciencia e Innovación (GLC2008-01127/BOS and CGL2011-23681 to PC), the ERC Advanced Grant project number 250254 “MINOS” (to GB), and two Spanish government grants (to JADM and FJB)

    Single gene locus changes perturb complex microbial communities as much as apex predator loss

    Get PDF
    Many bacterial species are highly social, adaptively shaping their local environment through the production of secreted molecules. This can, in turn, alter interaction strengths among species and modify community composition. However, the relative importance of such behaviours in determining the structure of complex communities is unknown. Here we show that single-locus changes affecting biofilm formation phenotypes in Bacillus subtilis modify community structure to the same extent as loss of an apex predator and even to a greater extent than loss of B. subtilis itself. These results, from experimentally manipulated multitrophic microcosm assemblages, demonstrate that bacterial social traits are key modulators of the structure of their communities. Moreover, they show that intraspecific genetic variability can be as important as strong trophic interactions in determining community dynamics. Microevolution may therefore be as important as species extinctions in shaping the response of microbial communities to environmental change

    Electrosensory stimulus-intensity thresholds in the weakly electric knifefish Eigenmannia: reduced sensitivity at harmonics of its own organ discharge

    No full text
    The South American knifefish Eigenmannia sp. can detect the electric organ discharges (EODs; 250–600 Hz) of conspecifics when they are superimposed over its own EOD. This study investigates the minimum frequency difference necessary for such signal perception, using the application of sine-wave stimuli. Electrosensory stimulusintensity thresholds were determined for trained fish using stimuli associated with food rewards. These sinewave stimuli were ‘clamped’ to the EOD frequency of the fish. Electrosensory thresholds were also determined for the spontaneous jamming avoidance response (JAR; a change in EOD frequency evoked by a stimulus of sufficiently similar frequency), in this case using unclamped stimuli. Over the wide frequency range investigated (0.3–3.01 times EOD frequency), the lowest stimulus-intensity thresholds of 0.6mVcm21 (peak-to-peak) (0 dB) at a water conductivity of 100mScm21 were found close to (but not exactly at) the EOD fundamental frequency. At exact frequency identity between the EOD and the stimulus, the stimulus-intensity response threshold rose abruptly by more than 10 dB compared with slightly higher or lower stimulus frequencies. A similar ‘needle-like’ threshold increase was found at exactly two and three times the EOD frequency, but neither at harmonic ratios between stimulus and EOD frequency that represent fractions (e.g. at 5:4=1.25, 4:3=1.33, 3:2=1.5 or 5:3=1.67 times EOD frequency) nor at subharmonics such as half or two-thirds of the EOD frequency. The steepest increase of stimulusintensity response threshold was in the range 0.998–1.002 times EOD frequency, corresponding to a threshold change, or electrosensory filter slope, of 5000 dB per octave. For the spontaneous JAR, a similar stimulus-intensity threshold increase was observed when EOD frequency equalled stimulus frequency. Because of the longer rise time for the stimulus amplitude (400 ms rather than 35 ms) the stimulus intensity threshold was higher (up to 32 dB; mean, 20 dB) than in the other experiments (up to 15 dB; mean, 13 dB). A difference in frequency between the EOD and the applied stimulus as small as 1 Hz (that is, 0.2 % of the EOD frequency) was sufficient for good signal perception in Eigenmannia sp. The JAR appears to be useful in avoiding insensitivity at exact integer harmonics of the EOD frequency

    Electrosensory phase sensitivity in the weakly electric fish Eigenmannia in the detection of signals similar to its own

    No full text
    The electric organ discharge (EOD) of the South American knifefish Eigenmannia sp. is a permanently present wave signal of usually constant amplitude and frequency (similar to a sine wave). A fish perceives discharges of other fish as a modulation of its own. At frequency identity (∆F = 0 Hz) the phase difference between a fish's own electric discharge and that of another fish affects the superimposed waveform. It was unclear whether or not the electrosensory stimulus- intensity threshold as behaviourally determined depends on the phase difference between a fish's own EOD and a sine-wave stimulus (at ∆F = 0 Hz). Also the strength of the jamming avoidance response (JAR), a discharge frequency shift away from a stimulus that is sufficiently close to the EOD frequency, as a function of phase difference was studied. Sine-wave stimuli were both frequency-clamped and phase-locked to a fish's discharge frequency (∆F = 0Hz). In food-rewarded fish, the electrosensory stimulus-intensity threshold depended significantly on the phase difference between a fish's discharge and the stimulus. Stimulus-intensity thresholds were low (down to 3 ”V/cm, peak-to-peak) when the superimposed complex wave changed such that the shift in zero-crossings times relative to the original EOD was large but amplitude change minimal; stimulus-intensity thresholds were high (up to 16.9 ”V/cm, peak-to-peak) when the shift in zero-crossings times was small but amplitude change maximal. Similar results were obtained for the non-conditioned JAR: at constant supra-threshold stimulus intensities and ∆F = 0 Hz, the phase difference significantly affected the strength of the JAR, although variability between individuals was higher than that observed in the conditioned experiments
    • 

    corecore