29 research outputs found

    Analysis of novel nonviral gene transfer systems for gene delivery to cells of the musculoskeletal system

    Get PDF
    The aim of the present study was to evaluate the efficacy of novel nonviral gene delivery systems in cells of musculoskeletal origin. Primary cultures of lapine skeletal muscle cells, lapine articular chondrocytes, human cells from fibrous dysplasia and cell lines established from human osteosarcoma (SAOS-2), chondrosarcoma (CS-1), murine skeletal myoblasts (L8) and fibroblasts (NIH 3T3)were transfected with the P. pyralis luc or the E. coli lacZ genes using Nanofectin 1 and 2, Superfect, JetPEI, Gene-Jammer, Effectene, TransPass D2, FuGENE 6, Lipofectamine 2000, Dreamfect, Metafectene, Escort III, and calcium phosphate. Maximal transfection efficiency in lapine skeletal muscle cells was of 60.8 ± 21.2% using Dreamfect, 38.9 ± 5.0% in articular chondrocytes using Gene Jammer, 5.2 ± 8.0% in human cells from fibrous dysplasia using Lipofectamine 2000, 12.7 ± 16.2% in SAOS-2 cells using FuGENE 6, 29.9 ± 3.5% in CS-1 cells using Lipofectamine 2000, 70.7 ± 8.6% in L8 cells using FuGENE 6, and 48.9 ± 13.0% in NIH 3T3 cells using Metafectene. When the cells were transfected with a human IGF-I gene, significant amounts of the IGF-I protein were secreted. These results indicate that relatively high levels of transfection can be achieved using novel nonviral gene transfer methods. Keywords Gene transfer - Nonviral - Musculoskeletal cells - IGF-I - Transfection efficienc

    Effect of transforming growth factor-ß1 (TGF-ß1) released from a scaffold on chondrogenesis in an osteochondral defect model in the rabbit

    Get PDF
    Articular cartilage repair might be stimulated by the controlled delivery of therapeutic factors. We tested the hypotheses whether TGF-ß1 can be released from a polymeric scaffold over a prolonged period of time in vitro and whether its transplantation modulates cartilage repair in vivo. Unloaded control or TGF-ß1 poly(ether-ester) copolymeric scaffolds were applied to osteochondral defects in the knee joints of rabbits. In vitro, a cumulative dose of 9 ng TGF-ß1 was released over 4 weeks. In vivo, there were no adverse effects on the synovial membrane. Defects treated with TGF-ß1 scaffolds showed no significant difference in individual parameters of chondrogenesis and in the average cartilage repair score after 3 weeks. There was a trend towards a smaller area (42.5 %) of the repair tissue that stained positive for safranin O in defects receiving TGF-ß1 scaffolds. The data indicate that TGF-ß1 is released from emulsioncoated scaffolds over a prolonged period of time in vitro and that application of these scaffolds does not significantly modulate cartilage repair after 3 weeks in vivo. Future studies need to address the importance of TGF-ß1 dose and release rate to modulate chondrogenesis

    Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo

    Get PDF
    Background Defects of articular cartilage are an unsolved problem in orthopaedics. In the present study, we tested the hypothesis that gene transfer of human fibroblast growth factor 2 (FGF-2) via transplantation of encapsulated genetically modified articular chondrocytes stimulates chondrogenesis in cartilage defects in vivo. Methods Lapine articular chondrocytes overexpressing a lacZ or a human FGF-2 gene sequence were encapsulated in alginate and further characterized. The resulting lacZ or FGF-2 spheres were applied to cartilage defects in the knee joints of rabbits. In vivo, cartilage repair was assessed qualitatively and quantitatively at 3 and 14 weeks after implantation. Results In vitro, bioactive FGF-2 was secreted, leading to a significant increase in the cell numbers in FGF-2 spheres. In vivo, FGF-2 continued to be expressed for at least 3 weeks without leading to differences in FGF-2 concentrations in the synovial fluid between treatment groups. Histological analysis revealed no adverse pathologic effects on the synovial membrane at any time point. FGF-2 gene transfer enhanced type II collagen expression and individual parameters of chondrogenesis, such as the cell morphology and architecture of the new tissue. Overall articular cartilage repair was significantly improved at both time points in vivo. Conclusions The data suggest that localized overexpression of FGF-2 enhances the repair of cartilage defects via stimulation of chondrogenesis, without adverse effects on the synovial membrane. These results may lead to the development of safe gene-based therapies for human articular cartilage defects

    Analysis of novel nonviral gene transfer systems for gene delivery to cells of the musculoskeletal system

    Get PDF
    The aim of the present study was to evaluate the efficacy of novel nonviral gene delivery systems in cells of musculoskeletal origin. Primary cultures of lapine skeletal muscle cells, lapine articular chondrocytes, human cells from fibrous dysplasia and cell lines established from human osteosarcoma (SAOS-2), chondrosarcoma (CS-1), murine skeletal myoblasts (L8) and fibroblasts (NIH 3T3)were transfected with the P. pyralis luc or the E. coli lacZ genes using Nanofectin 1 and 2, Superfect, JetPEI, Gene-Jammer, Effectene, TransPass D2, FuGENE 6, Lipofectamine 2000, Dreamfect, Metafectene, Escort III, and calcium phosphate. Maximal transfection efficiency in lapine skeletal muscle cells was of 60.8 ± 21.2% using Dreamfect, 38.9 ± 5.0% in articular chondrocytes using Gene Jammer, 5.2 ± 8.0% in human cells from fibrous dysplasia using Lipofectamine 2000, 12.7 ± 16.2% in SAOS-2 cells using FuGENE 6, 29.9 ± 3.5% in CS-1 cells using Lipofectamine 2000, 70.7 ± 8.6% in L8 cells using FuGENE 6, and 48.9 ± 13.0% in NIH 3T3 cells using Metafectene. When the cells were transfected with a human IGF-I gene, significant amounts of the IGF-I protein were secreted. These results indicate that relatively high levels of transfection can be achieved using novel nonviral gene transfer methods. Keywords Gene transfer - Nonviral - Musculoskeletal cells - IGF-I - Transfection efficienc

    Asymptotic quasinormal modes of Reissner-Nordstr\"om and Kerr black holes

    Full text link
    According to a recent proposal, the so-called Barbero-Immirzi parameter of Loop Quantum Gravity can be fixed, using Bohr's correspondence principle, from a knowledge of highly-damped black hole oscillation frequencies. Such frequencies are rather difficult to compute, even for Schwarzschild black holes. However, it is now quite likely that they may provide a fundamental link between classical general relativity and quantum theories of gravity. Here we carry out the first numerical computation of very highly damped quasinormal modes (QNM's) for charged and rotating black holes. In the Reissner-Nordstr\"om case QNM frequencies and damping times show an oscillatory behaviour as a function of charge. The oscillations become faster as the mode order increases. At fixed mode order, QNM's describe spirals in the complex plane as the charge is increased, tending towards a well defined limit as the hole becomes extremal. Kerr QNM's have a similar oscillatory behaviour when the angular index m=0m=0. For l=m=2l=m=2 the real part of Kerr QNM frequencies tends to 2Ω2\Omega, Ω\Omega being the angular velocity of the black hole horizon, while the asymptotic spacing of the imaginary parts is given by 2πTH2\pi T_H.Comment: 13 pages, 7 figures. Added result on the asymptotic spacing of the imaginary part, minor typos correcte

    Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo

    Get PDF
    Background Defects of articular cartilage are an unsolved problem in orthopaedics. In the present study, we tested the hypothesis that gene transfer of human fibroblast growth factor 2 (FGF-2) via transplantation of encapsulated genetically modified articular chondrocytes stimulates chondrogenesis in cartilage defects in vivo. Methods Lapine articular chondrocytes overexpressing a lacZ or a human FGF-2 gene sequence were encapsulated in alginate and further characterized. The resulting lacZ or FGF-2 spheres were applied to cartilage defects in the knee joints of rabbits. In vivo, cartilage repair was assessed qualitatively and quantitatively at 3 and 14 weeks after implantation. Results In vitro, bioactive FGF-2 was secreted, leading to a significant increase in the cell numbers in FGF-2 spheres. In vivo, FGF-2 continued to be expressed for at least 3 weeks without leading to differences in FGF-2 concentrations in the synovial fluid between treatment groups. Histological analysis revealed no adverse pathologic effects on the synovial membrane at any time point. FGF-2 gene transfer enhanced type II collagen expression and individual parameters of chondrogenesis, such as the cell morphology and architecture of the new tissue. Overall articular cartilage repair was significantly improved at both time points in vivo. Conclusions The data suggest that localized overexpression of FGF-2 enhances the repair of cartilage defects via stimulation of chondrogenesis, without adverse effects on the synovial membrane. These results may lead to the development of safe gene-based therapies for human articular cartilage defects

    Increased Coronary Artery Disease Severity in Black Women Undergoing Coronary Bypass Surgery

    Get PDF
    Race and sex disparities are believed to play an important role in heart disease. The purpose of this study was to examine the association between race, sex, and number of diseased vessels at the time of coronary artery bypass grafting (CABG), and subsequent postoperative outcomes. The 13,774 patients undergoing first-time, isolated CABG between 1992 and 2011 were included. Trend in the number of diseased vessels between black and white patients, stratified by sex, were analyzed using a Cochran-Armitage trend test. Models were adjusted for age, procedural status (elective vs. nonelective), and payor type (private vs. nonprivate insurance). Black female CABG patients presented with an increasingly greater number of diseased vessels than white female CABG patients (adjusted P(trend) = 0.0021). A similar trend was not observed between black and white male CABG patients (adjusted P(trend) = 0.18). Black female CABG patients were also more likely to have longer intensive care unit and hospital lengths of stay than other race-sex groups.Our findings suggest that black female CABG patients have more advanced coronary artery disease than white female CABG patients. Further research is needed to determine the benefit of targeted preventive care and preoperative workup for this high-risk group

    A flat model approach to tethered bis(imino)pyridyl iron ethylene polymerization catalysts

    No full text
    A surface science model for a silica supported bis(imino)pyridyl iron complexes is applied to reveal the surface chemistry of these heterogeneous polymerization catalysts. The polymerization activity of these models and the molecular weight distribution of the resulting polymer are comparable to similar catalysts supported on amorphous silica. The catalyst deactivates partially during the first hour of ethylene polymerization. Based on photoelectron spectroscopy (XPS) we attribute this deactivation to iron extrusion by the aluminium alkyl activator
    corecore