4,384 research outputs found
Polymorphous low grade adenocarcinoma-an unusual presentation
Polymorphous low-grade adenocarcinoma (PLGA) is a neoplasm that occurs frequently in the mucosa of the soft and hard palates, in the buccal mucosa and in the upper lip and is very rare within the nasopharynx. We present a case of PLGA, which presented as a nasal polyp
Logarithmic correction to the Bekenstein-Hawking entropy of the BTZ black hole
We derive an exact expression for the partition function of the Euclidean BTZ
black hole. Using this, we show that for a black hole with large horizon area,
the correction to the Bekenstein-Hawking entropy is , in
agreement with that for the Schwarzschild black hole obtained in the canonical
gravity formalism and also in a Lorentzian computation of BTZ black hole
entropy. We find that the right expression for the logarithmic correction in
the context of the BTZ black hole comes from the modular invariance associated
with the toral boundary of the black hole.Comment: LaTeX, 10 pages, typos corrected, clarifications adde
A Continuous Injection Plasma Model for the X-Ray/Radio Knots in Kpc-Scale Jets of AGN
We consider the evolution of a spherically expanding plasma cloud, where
there is continuous injection of non-thermal electrons. We compute the time
dependent electron distribution and resultant photon spectra taking into
account synchrotron, adiabatic and inverse Compton cooling. This model is
different from previous works where, instead of a continuous injection of
particles, a short injection period was assumed. We apply this model to the
radio/optical knots in the large scale jets of AGN, detected in X-rays by {\it
Chandra} and find that the overall broadband spectral features can be
reproduced. It is shown that for some sources, constraints on the X-ray
spectral index (by a longer {\it Chandra} observation) will be able to
differentiate between the different models. This in turn will put a strong
constraint on the acceleration mechanism active in these sources.Comment: Accepted for publications in the Astrophysical Journal Letter
Tadpole Method and Supersymmetric O(N) Sigma Model
We examine the phase structures of the supersymmetric O(N) sigma model in two
and three dimensions by using the tadpole method. Using this simple method, the
calculation is largely simplified and the characteristics of this theory become
clear. We also examine the problem of the fictitious negative energy state.Comment: Plain Latex(12pages), No figur
Quantum Aspects of Black Hole Entropy
This survey intends to cover recent approaches to black hole entropy which
attempt to go beyond the standard semiclassical perspective. Quantum
corrections to the semiclassical Bekenstein-Hawking area law for black hole
entropy, obtained within the quantum geometry framework, are treated in some
detail. Their ramification for the holographic entropy bound for bounded
stationary spacetimes is discussed. Four dimensional supersymmetric extremal
black holes in string-based N=2 supergravity are also discussed, albeit more
briefly.Comment: 13 Pages Revtex with 3 eps figures; based on plenary talk given at
the International Conference on Gravitation and Cosmology, Kharagpur, India,
January, 2000 One reference adde
Spin correlations and exchange in square lattice frustrated ferromagnets
The J1-J2 model on a square lattice exhibits a rich variety of different
forms of magnetic order that depend sensitively on the ratio of exchange
constants J2/J1. We use bulk magnetometry and polarized neutron scattering to
determine J1 and J2 unambiguously for two materials in a new family of vanadium
phosphates, Pb2VO(PO4)2 and SrZnVO(PO4)2, and we find that they have
ferromagnetic J1. The ordered moment in the collinear antiferromagnetic ground
state is reduced, and the diffuse magnetic scattering is enhanced, as the
predicted bond-nematic region of the phase diagram is approached.Comment: 4 pages, 4 figure
Interaction of Arabidopsis Thaliana with Plasmodiophora Brassicae
Plasmodiophora brassicae is a protistan pathogen that attacks roots of brassicaceous plant species causing devastating disease. Resistance is characterised by restriction of the pathogen and susceptibility by the development of severely malformed roots (‘clubroots’) and stunting of the plant that is associated with alterations in the synthesis of cytokinin and auxin hormones. We are examining the susceptible response in Arabidopsis and whether suppression of key resistance factors by the pathogen contributes to susceptibility. The interaction is being studied using a number of approaches including microscopy of the infection process and development of the pathogen within roots and host gene expression analysis. Quantitative PCR was used to confirm the timing of infection of roots and showed that infection occurred at day four and colonisation increased thereafter to high levels by 23 days after inoculation by which time roots were showing systemic abnormalities. To investigate the basis of this compatible interaction we have conducted a time course experiment following infection of a susceptible ecotype of Arabidopsis (Col-0) to examine whole genome geneexpression changes in the host. Differential gene expression analysis of inoculated versus control roots showed that a higher number of genes had altered expression levels at day four compared to that at day seven and at day ten. At day four the expression levels of several genes known to be important for recognition and signal transduction in resistant interactions and genes involved in the biosynthesis of lignin, phenylpropanoids and ethylene were suppressed. Suppression by P. brassicae of specific plant defence responses appears to be a key component of susceptibility in this system.<br /
Artificial Neural Network-based error compensation procedure for low-cost encoders
An Artificial Neural Network-based error compensation method is proposed for
improving the accuracy of resolver-based 16-bit encoders by compensating for
their respective systematic error profiles. The error compensation procedure,
for a particular encoder, involves obtaining its error profile by calibrating
it on a precision rotary table, training the neural network by using a part of
this data and then determining the corrected encoder angle by subtracting the
ANN-predicted error from the measured value of the encoder angle. Since it is
not guaranteed that all the resolvers will have exactly similar error profiles
because of the inherent differences in their construction on a micro scale, the
ANN has been trained on one error profile at a time and the corresponding
weight file is then used only for compensating the systematic error of this
particular encoder. The systematic nature of the error profile for each of the
encoders has also been validated by repeated calibration of the encoders over a
period of time and it was found that the error profiles of a particular encoder
recorded at different epochs show near reproducible behavior. The ANN-based
error compensation procedure has been implemented for 4 encoders by training
the ANN with their respective error profiles and the results indicate that the
accuracy of encoders can be improved by nearly an order of magnitude from
quoted values of ~6 arc-min to ~0.65 arc-min when their corresponding
ANN-generated weight files are used for determining the corrected encoder
angle.Comment: 16 pages, 4 figures. Accepted for Publication in Measurement Science
and Technology (MST
- âŠ