45 research outputs found

    Method for investigating the formation of crystals in a transparent material

    Get PDF
    The observation of crystal formation in a transparent specimen is described. A portion of the specimen is melted in a heating zone, then frozen by a cooling zone, which is spaced from the heating zone by a gap, which can be kept under observation. The temperatures of the heating and cooling zones are controlled to create a variable temperature gradient across the gap so that the freezing isotherm of the specimen always remains in a substantially constant position within the gap, where it can be observed, and where the specimen can be moved longitudinally while the temperature gradient is changed

    Glass formability of high T(sub c) Bi-Sr-Ca-Cu-O superconductors

    Get PDF
    A number of compositions of ceramic oxide high T(sub c) superconductors were evaluated for their glass formation ability by means of rapid thermal analysis during quenching, optical and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass, then with subsequent devitrification it was formed into bulk crystalline superconductor by a series of processing methods

    Cellular monotectic model solidification

    Get PDF
    Succinonitrile (sn) was purified to a superior level using a fractional recrystallization method. The melting point of the best twice recrystallized sn was not raised by following with double distillation. This was tested using differential scanning calorimetry. The peak shape on melting also proved that double distillation after double recrystallization did not improve the quality. Stability and phase diagrams for succinonitrile and glycerol are presented

    Critical point wetting drop tower experiment

    Get PDF
    The 100 m Drop Tower at NASA-Marshall was used to provide the step change in acceleration from 1.0 to 0.0005 g. An inter-fluid meniscus oscillates vertically within a cylindrical container when suddenly released from earth's gravity and taken into a microgravity environment. Oscillations damp out from energy dissipative mechanisms such as viscosity and interfacial friction. Damping of the oscillations by the later mechanism is affected by the nature of the interfacial junction between the fluid-fluid interface and the container wall. In earlier stages of the project, the meniscus shape which developed during microgravity conditions was applied to evaluations of wetting phenomena near the critical temperature. Variations in equilibrium contact angle against the container wall were expected to occur under critical wetting conditions. However, it became apparent that the meaningful phenomenon was the damping of interfacial oscillations. This latter concept makes up the bulk of this report. Perfluoromethyl cyclohexane and isopropanol in glass were the materials used for the experiment. The wetting condition of the fluids against the wall changes at the critical wetting transition temperature. This change in wetting causes a change in the damping characteristics of the interfacial excursions during oscillation and no measurable change in contact angle. The effect of contact line friction measured above and below the wetting transition temperature was to increase the period of vertical oscillation for the vapor-liquid interface when below the wetting transition temperature

    Laser Welding in Space

    Get PDF
    Solidification type welding process experiments in conditions of microgravity were performed. The role of convection in such phenomena was examined and convective effects in the small volumes obtained in the laser weld zone were observed. Heat transfer within the weld was affected by acceleration level as indicated by the resulting microstructure changes in low gravity. All experiments were performed such that both high and low gravity welds occurred along the same weld beam, allowing the effects of gravity alone to be examined. Results indicate that laser welding in a space environment is feasible and can be safely performed IVA or EVA. Development of the hardware to perform the experiment in a Hitchhiker-g platform is recomended as the next step. This experiment provides NASA with a capable technology for welding needs in space. The resources required to perform this experiment aboard a Shuttle Hitchhiker-pallet are assessed. Over the four year period 1991 to 1994, it is recommended that the task will require 13.6 manyears and $914,900. In addition to demonstrating the technology and ferreting out the problems encountered, it is suggested that NASA will also have a useful laser materials processing facility for working with both the scientific and the engineering aspects of materials processing in space. Several concepts are also included for long-term optimization of available solar power through solar pumping solid state lasers directly for welding power

    Expert systems for superalloy studies

    Get PDF
    There are many areas in science and engineering which require knowledge of an extremely complex foundation of experimental results in order to design methodologies for developing new materials or products. Superalloys are an area which fit well into this discussion in the sense that they are complex combinations of elements which exhibit certain characteristics. Obviously the use of superalloys in high performance, high temperature systems such as the Space Shuttle Main Engine is of interest to NASA. The superalloy manufacturing process is complex and the implementation of an expert system within the design process requires some thought as to how and where it should be implemented. A major motivation is to develop a methodology to assist metallurgists in the design of superalloy materials using current expert systems technology. Hydrogen embrittlement is disasterous to rocket engines and the heuristics can be very complex. Attacking this problem as one module in the overall design process represents a significant step forward. In order to describe the objectives of the first phase implementation, the expert system was designated Hydrogen Environment Embrittlement Expert System (HEEES)

    Artificial intelligence in the materials processing laboratory

    Get PDF
    Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys

    Transparent metal model study of the use of a cellular growth front to form aligned monotectic composite materials

    Get PDF
    The purpose of this work was to resolve a scientific controversy in the understanding of how second phase particles become aligned during unidirectional growth of a monotectic alloy. A second aspect was to make the first systematic observations of the solidification behavior of a monotectic alloy during cellular growth in-situ. This research provides the first systematic transparent model study of cellular solidification. An interface stability diagram was developed for the planar to cellular transition of the succinonitrile glycerol (SNG) system. A method was developed utilizing Fourier Transform Infrared Spectroscopy which allows quantitative compositional analysis of directionally solidified SNG along the growth axis. To determine the influence of cellular growth front on alignment for directionally solidified monotectic alloys, the planar and cellular growth morphology was observed in-situ for SNG between 8 and 17 percent glycerol and for a range of over two orders of magnitude G/R

    X-Ray Transmission Microscope Development

    Get PDF
    We have succeeded in meeting the goals set out in the proposal. A cadre of detector technologies is available to suit the requirements of the experiment. Resolutions of both real-time and absolute limits to resolution exceed the initial aspirations. Obtaining sufficient contrast is still a significant limitation but can be overcome by Judicious selection of the specimen composition. This can only take time and trial and error for a successful result. The 4th generation furnace provides the capability of real-time in-situ observations of composite alloy development. A low detection sensitivity however, has still made it difficult to observe dendritic growth, although it has been 'seen' in raw video; it was not a recordable signal. We have examined flight ampoules with XTM to observe particle and thermocouple placement, crucible flaws and cracks in collaboration with the Particle Pushing and Engulfment flight experiment (Dr. Stefanescu, UA, P.I.). The value of an in flight XTM to guard against experiment failure and safety assurance is obvious. Although not attributable to equipment limitations, a quest to observe particle pushing was not successful. We tried at length to prepare specimens that would demonstrate particle pushing. Instead, we were successful in imaging the interface deformation due to the thermal field distortion of a ceramic particle or void and to compare to calculated shapes. In theory, we should have been able to make major inroads to this field if the particles could be pushed and the velocities adjusted to make critical measurements. On the other hand, critical issues of sample preparation for the PEP flight experiment were established, particularly the clustering of particles and trapped voids. In this regard, the XTM did prove very useful so that flight specimens would work as expected and to perform post flight analysis. Although not a clear result, particle pushing of precipitates was observed in an Al-Si-Mn alloy. It may be that to be pushed, the particles need to be small and have clean surfaces like one might obtain from in-situ precipitation. The ability to image features in real time skill enable more fundamental and detailed understanding of solidification dynamics in microgravity than had previously been possible, thus, allowing the full benefits of microgravity experiments be applied towards rigorous testing of critical solidification models. The XTM is also a valuable tool for post solidification metallography. The 3-dimensional distribution of solute and solidification features within the specimen volume can be viewed without sectioning or other treatment when the solute has sufficiently higher atomic mass than the solvent. Thus the XTM could provide the first practical method for on orbit microstructural (metallographic) analysis by the astronauts or by telescience

    Microwave Processing of Planetary Surfaces for the Extraction of Volatiles

    Get PDF
    In-Situ Resource Utilization will be necessary for sustained exploration of space. Volatiles are present in planetary soils, but water by far has the most potential for effective utilization. The presence of water at the lunar poles, Mars, and possibly on Phobos opens the possibility of producing LOX for propellant. Water is also a useful radiation shielding material , and valuable to replenish expendables (water and oxygen) required for habitation in space. Because of the strong function of water vapor pressure with temperature, heating soil effectively liberates water vapor by sublimation. Microwave energy will penetrate soil and heat from within much more efficiently than heating from the surface with radiant heat. This is especially true under vacuum conditions since the heat transfer rate is very low. The depth of microwave penetration is a strong function of the microwave frequency and to a lesser extent on soil dielectric properties. Methods for complex electric permittivity and magnetic permeability measurement are being developed and used for measurements of lunar soil simulants. A new method for delivery of microwaves deep into a planetary surface is being prototyped with laboratory experiments and modeled with COMSOL MultiPhysics. We are planning to set up a planetary testbed in a large vacuum chamber in the coming year. Recent results are discussed
    corecore