4,002 research outputs found

    Teleportation, Braid Group and Temperley--Lieb Algebra

    Full text link
    We explore algebraic and topological structures underlying the quantum teleportation phenomena by applying the braid group and Temperley--Lieb algebra. We realize the braid teleportation configuration, teleportation swapping and virtual braid representation in the standard description of the teleportation. We devise diagrammatic rules for quantum circuits involving maximally entangled states and apply them to three sorts of descriptions of the teleportation: the transfer operator, quantum measurements and characteristic equations, and further propose the Temperley--Lieb algebra under local unitary transformations to be a mathematical structure underlying the teleportation. We compare our diagrammatical approach with two known recipes to the quantum information flow: the teleportation topology and strongly compact closed category, in order to explain our diagrammatic rules to be a natural diagrammatic language for the teleportation.Comment: 33 pages, 19 figures, latex. The present article is a short version of the preprint, quant-ph/0601050, which includes details of calculation, more topics such as topological diagrammatical operations and entanglement swapping, and calls the Temperley--Lieb category for the collection of all the Temperley--Lieb algebra with physical operations like local unitary transformation

    The Number of Different Binary Functions Generated by NK-Kauffman Networks and the Emergence of Genetic Robustness

    Full text link
    We determine the average number ϑ(N,K) \vartheta (N, K) , of \textit{NK}-Kauffman networks that give rise to the same binary function. We show that, for N1 N \gg 1 , there exists a connectivity critical value Kc K_c such that ϑ(N,K)eϕN \vartheta(N,K) \approx e^{\phi N} (ϕ>0 \phi > 0 ) for K<Kc K < K_c and ϑ(N,K)1\vartheta(N,K) \approx 1 for K>Kc K > K_c . We find that Kc K_c is not a constant, but scales very slowly with N N , as Kclog2log2(2N/ln2) K_c \approx \log_2 \log_2 (2N / \ln 2) . The problem of genetic robustness emerges as a statistical property of the ensemble of \textit{NK}-Kauffman networks and impose tight constraints in the average number of epistatic interactions that the genotype-phenotype map can have.Comment: 4 figures 18 page

    Attractors in fully asymmetric neural networks

    Full text link
    The statistical properties of the length of the cycles and of the weights of the attraction basins in fully asymmetric neural networks (i.e. with completely uncorrelated synapses) are computed in the framework of the annealed approximation which we previously introduced for the study of Kauffman networks. Our results show that this model behaves essentially as a Random Map possessing a reversal symmetry. Comparison with numerical results suggests that the approximation could become exact in the infinite size limit.Comment: 23 pages, 6 figures, Latex, to appear on J. Phys.

    Quantum entanglement: The unitary 8-vertex braid matrix with imaginary rapidity

    Full text link
    We study quantum entanglements induced on product states by the action of 8-vertex braid matrices, rendered unitary with purely imaginary spectral parameters (rapidity). The unitarity is displayed via the "canonical factorization" of the coefficients of the projectors spanning the basis. This adds one more new facet to the famous and fascinating features of the 8-vertex model. The double periodicity and the analytic properties of the elliptic functions involved lead to a rich structure of the 3-tangle quantifying the entanglement. We thus explore the complex relationship between topological and quantum entanglement.Comment: 4 pages in REVTeX format, 2 figure

    On the Robustness of NK-Kauffman Networks Against Changes in their Connections and Boolean Functions

    Full text link
    NK-Kauffman networks {\cal L}^N_K are a subset of the Boolean functions on N Boolean variables to themselves, \Lambda_N = {\xi: \IZ_2^N \to \IZ_2^N}. To each NK-Kauffman network it is possible to assign a unique Boolean function on N variables through the function \Psi: {\cal L}^N_K \to \Lambda_N. The probability {\cal P}_K that \Psi (f) = \Psi (f'), when f' is obtained through f by a change of one of its K-Boolean functions (b_K: \IZ_2^K \to \IZ_2), and/or connections; is calculated. The leading term of the asymptotic expansion of {\cal P}_K, for N \gg 1, turns out to depend on: the probability to extract the tautology and contradiction Boolean functions, and in the average value of the distribution of probability of the Boolean functions; the other terms decay as {\cal O} (1 / N). In order to accomplish this, a classification of the Boolean functions in terms of what I have called their irreducible degree of connectivity is established. The mathematical findings are discussed in the biological context where, \Psi is used to model the genotype-phenotype map.Comment: 17 pages, 1 figure, Accepted in Journal of Mathematical Physic

    Network growth models and genetic regulatory networks

    Full text link
    We study a class of growth algorithms for directed graphs that are candidate models for the evolution of genetic regulatory networks. The algorithms involve partial duplication of nodes and their links, together with innovation of new links, allowing for the possibility that input and output links from a newly created node may have different probabilities of survival. We find some counterintuitive trends as parameters are varied, including the broadening of indegree distribution when the probability for retaining input links is decreased. We also find that both the scaling of transcription factors with genome size and the measured degree distributions for genes in yeast can be reproduced by the growth algorithm if and only if a special seed is used to initiate the process.Comment: 8 pages with 7 eps figures; uses revtex4. Added references, cleaner figure

    Topological Evolution of Dynamical Networks: Global Criticality from Local Dynamics

    Full text link
    We evolve network topology of an asymmetrically connected threshold network by a simple local rewiring rule: quiet nodes grow links, active nodes lose links. This leads to convergence of the average connectivity of the network towards the critical value Kc=2K_c =2 in the limit of large system size NN. How this principle could generate self-organization in natural complex systems is discussed for two examples: neural networks and regulatory networks in the genome.Comment: 4 pages RevTeX, 4 figures PostScript, revised versio

    The Omega Dependence of the Evolution of xi(r)

    Full text link
    The evolution of the two-point correlation function, xi(r,z), and the pairwise velocity dispersion, sigma(r,z), for both the matter and halo population, in three different cosmological models: (Omega_M,Omega_Lambda)=(1,0), (0.2,0) and (0.2,0.8) are described. If the evolution of xi is parameterized by xi(r,z)=(1+z)^{-(3+eps)}xi(r,0), where xi(r,0)=(r/r_0)^{-gamma}, then eps(mass) ranges from 1.04 +/- 0.09 for (1,0) to 0.18 +/- 0.12 for (0.2,0), as measured by the evolution of at 1 Mpc (from z ~ 5 to the present epoch). For halos, eps depends on their mean overdensity. Halos with a mean overdensity of about 2000 were used to compute the halo two-point correlation function tested with two different group finding algorithms: the friends of friends and the spherical overdensity algorithm. It is certainly believed that the rate of growth of this xihh will give a good estimate of the evolution of the galaxy two-point correlation function, at least from z ~ 1 to the present epoch. The values we get for eps(halos) range from 1.54 for (1,0) to -0.36 for (0.2,0), as measured by the evolution of xi(halos) from z ~ 1.0 to the present epoch. These values could be used to constrain the cosmological scenario. The evolution of the pairwise velocity dispersion for the mass and halo distribution is measured and compared with the evolution predicted by the Cosmic Virial Theorem (CVT). According to the CVT, sigma(r,z)^2 ~ G Q rho(z) r^2 xi(r,z) or sigma proportional to (1+z)^{-eps/2}. The values of eps measured from our simulated velocities differ from those given by the evolution of xi and the CVT, keeping gamma and Q constant: eps(CVT) = 1.78 +/- 0.13 for (1,0) or 1.40 +/- 0.28 for (0.2,0).Comment: Accepted for publication in the ApJ. Also available at http://manaslu.astro.utoronto.ca/~carlberg/cnoc/xiev/xi_evo.ps.g

    The Asymptotic Number of Attractors in the Random Map Model

    Get PDF
    The random map model is a deterministic dynamical system in a finite phase space with n points. The map that establishes the dynamics of the system is constructed by randomly choosing, for every point, another one as being its image. We derive here explicit formulas for the statistical distribution of the number of attractors in the system. As in related results, the number of operations involved by our formulas increases exponentially with n; therefore, they are not directly applicable to study the behavior of systems where n is large. However, our formulas lend themselves to derive useful asymptotic expressions, as we show.Comment: 16 pages, 1 figure. Minor changes. To be published in Journal of Physics A: Mathematical and Genera

    Metal Abundances of KISS Galaxies III. Nebular Abundances for Fourteen Galaxies and the Luminosity-Metallicity Relationship for HII Galaxies

    Full text link
    We report results from the third in a series of nebular abundance studies of emission-line galaxies from the KPNO International Spectroscopic Survey (KISS). Galaxies with coarse metallicity estimates of 12 + log(O/H) less than 8.2 dex were selected for observation. Spectra of 14 galaxies, which cover the full optical region from [OII]3727,3729 to beyond [SII]6717,6731, are presented, and abundance ratios of N, O, Ne, S, and Ar are computed. The auroral [OIII]4363 line is detected in all 14 galaxies. Oxygen abundances determined through the direct electron temperature T_e method confirm that the sample is metal-poor with 7.61 <= 12 + log(O/H) <= 8.32. By using these abundances in conjunction with other T_e-based measurements from the literature, we demonstrate that HII galaxies and more quiescent dwarf irregular galaxies follow similar metallicity-luminosity (L-Z) relationships. The primary difference is a zero-point shift between the correlations such that HII galaxies are brighter by an average of 0.8 B magnitudes at a given metallicity. This offset can be used as evidence to argue that low-luminosity HII galaxies typically undergo factor of two luminosity enhancements, and starbursts that elevate the luminosities of their host galaxies by 2 to 3 magnitudes are not as common. We also demonstrate that the inclusion of interacting galaxies can increase the scatter in the L-Z relation and may force the observed correlation towards lower metallicities and/or larger luminosities. This must be taken into account when attempting to infer metal abundance evolution by comparing local L-Z relations with ones based on higher redshift samples since the fraction of interacting galaxies should increase with look-back time.Comment: 36 pages, 5 figures. ApJ, in pres
    corecore