4,002 research outputs found
Teleportation, Braid Group and Temperley--Lieb Algebra
We explore algebraic and topological structures underlying the quantum
teleportation phenomena by applying the braid group and Temperley--Lieb
algebra. We realize the braid teleportation configuration, teleportation
swapping and virtual braid representation in the standard description of the
teleportation. We devise diagrammatic rules for quantum circuits involving
maximally entangled states and apply them to three sorts of descriptions of the
teleportation: the transfer operator, quantum measurements and characteristic
equations, and further propose the Temperley--Lieb algebra under local unitary
transformations to be a mathematical structure underlying the teleportation. We
compare our diagrammatical approach with two known recipes to the quantum
information flow: the teleportation topology and strongly compact closed
category, in order to explain our diagrammatic rules to be a natural
diagrammatic language for the teleportation.Comment: 33 pages, 19 figures, latex. The present article is a short version
of the preprint, quant-ph/0601050, which includes details of calculation,
more topics such as topological diagrammatical operations and entanglement
swapping, and calls the Temperley--Lieb category for the collection of all
the Temperley--Lieb algebra with physical operations like local unitary
transformation
The Number of Different Binary Functions Generated by NK-Kauffman Networks and the Emergence of Genetic Robustness
We determine the average number , of \textit{NK}-Kauffman
networks that give rise to the same binary function. We show that, for , there exists a connectivity critical value such that () for and
for . We find that is not a
constant, but scales very slowly with , as . The problem of genetic robustness emerges as a statistical property
of the ensemble of \textit{NK}-Kauffman networks and impose tight constraints
in the average number of epistatic interactions that the genotype-phenotype map
can have.Comment: 4 figures 18 page
Attractors in fully asymmetric neural networks
The statistical properties of the length of the cycles and of the weights of
the attraction basins in fully asymmetric neural networks (i.e. with completely
uncorrelated synapses) are computed in the framework of the annealed
approximation which we previously introduced for the study of Kauffman
networks. Our results show that this model behaves essentially as a Random Map
possessing a reversal symmetry. Comparison with numerical results suggests that
the approximation could become exact in the infinite size limit.Comment: 23 pages, 6 figures, Latex, to appear on J. Phys.
Quantum entanglement: The unitary 8-vertex braid matrix with imaginary rapidity
We study quantum entanglements induced on product states by the action of
8-vertex braid matrices, rendered unitary with purely imaginary spectral
parameters (rapidity). The unitarity is displayed via the "canonical
factorization" of the coefficients of the projectors spanning the basis. This
adds one more new facet to the famous and fascinating features of the 8-vertex
model. The double periodicity and the analytic properties of the elliptic
functions involved lead to a rich structure of the 3-tangle quantifying the
entanglement. We thus explore the complex relationship between topological and
quantum entanglement.Comment: 4 pages in REVTeX format, 2 figure
On the Robustness of NK-Kauffman Networks Against Changes in their Connections and Boolean Functions
NK-Kauffman networks {\cal L}^N_K are a subset of the Boolean functions on N
Boolean variables to themselves, \Lambda_N = {\xi: \IZ_2^N \to \IZ_2^N}. To
each NK-Kauffman network it is possible to assign a unique Boolean function on
N variables through the function \Psi: {\cal L}^N_K \to \Lambda_N. The
probability {\cal P}_K that \Psi (f) = \Psi (f'), when f' is obtained through f
by a change of one of its K-Boolean functions (b_K: \IZ_2^K \to \IZ_2), and/or
connections; is calculated. The leading term of the asymptotic expansion of
{\cal P}_K, for N \gg 1, turns out to depend on: the probability to extract the
tautology and contradiction Boolean functions, and in the average value of the
distribution of probability of the Boolean functions; the other terms decay as
{\cal O} (1 / N). In order to accomplish this, a classification of the Boolean
functions in terms of what I have called their irreducible degree of
connectivity is established. The mathematical findings are discussed in the
biological context where, \Psi is used to model the genotype-phenotype map.Comment: 17 pages, 1 figure, Accepted in Journal of Mathematical Physic
Network growth models and genetic regulatory networks
We study a class of growth algorithms for directed graphs that are candidate
models for the evolution of genetic regulatory networks. The algorithms involve
partial duplication of nodes and their links, together with innovation of new
links, allowing for the possibility that input and output links from a newly
created node may have different probabilities of survival. We find some
counterintuitive trends as parameters are varied, including the broadening of
indegree distribution when the probability for retaining input links is
decreased. We also find that both the scaling of transcription factors with
genome size and the measured degree distributions for genes in yeast can be
reproduced by the growth algorithm if and only if a special seed is used to
initiate the process.Comment: 8 pages with 7 eps figures; uses revtex4. Added references, cleaner
figure
Topological Evolution of Dynamical Networks: Global Criticality from Local Dynamics
We evolve network topology of an asymmetrically connected threshold network
by a simple local rewiring rule: quiet nodes grow links, active nodes lose
links. This leads to convergence of the average connectivity of the network
towards the critical value in the limit of large system size . How
this principle could generate self-organization in natural complex systems is
discussed for two examples: neural networks and regulatory networks in the
genome.Comment: 4 pages RevTeX, 4 figures PostScript, revised versio
The Omega Dependence of the Evolution of xi(r)
The evolution of the two-point correlation function, xi(r,z), and the
pairwise velocity dispersion, sigma(r,z), for both the matter and halo
population, in three different cosmological models:
(Omega_M,Omega_Lambda)=(1,0), (0.2,0) and (0.2,0.8) are described. If the
evolution of xi is parameterized by xi(r,z)=(1+z)^{-(3+eps)}xi(r,0), where
xi(r,0)=(r/r_0)^{-gamma}, then eps(mass) ranges from 1.04 +/- 0.09 for (1,0) to
0.18 +/- 0.12 for (0.2,0), as measured by the evolution of at 1 Mpc (from z ~ 5
to the present epoch). For halos, eps depends on their mean overdensity. Halos
with a mean overdensity of about 2000 were used to compute the halo two-point
correlation function tested with two different group finding algorithms: the
friends of friends and the spherical overdensity algorithm. It is certainly
believed that the rate of growth of this xihh will give a good estimate of the
evolution of the galaxy two-point correlation function, at least from z ~ 1 to
the present epoch. The values we get for eps(halos) range from 1.54 for (1,0)
to -0.36 for (0.2,0), as measured by the evolution of xi(halos) from z ~ 1.0 to
the present epoch. These values could be used to constrain the cosmological
scenario. The evolution of the pairwise velocity dispersion for the mass and
halo distribution is measured and compared with the evolution predicted by the
Cosmic Virial Theorem (CVT). According to the CVT, sigma(r,z)^2 ~ G Q rho(z)
r^2 xi(r,z) or sigma proportional to (1+z)^{-eps/2}. The values of eps measured
from our simulated velocities differ from those given by the evolution of xi
and the CVT, keeping gamma and Q constant: eps(CVT) = 1.78 +/- 0.13 for (1,0)
or 1.40 +/- 0.28 for (0.2,0).Comment: Accepted for publication in the ApJ. Also available at
http://manaslu.astro.utoronto.ca/~carlberg/cnoc/xiev/xi_evo.ps.g
The Asymptotic Number of Attractors in the Random Map Model
The random map model is a deterministic dynamical system in a finite phase
space with n points. The map that establishes the dynamics of the system is
constructed by randomly choosing, for every point, another one as being its
image. We derive here explicit formulas for the statistical distribution of the
number of attractors in the system. As in related results, the number of
operations involved by our formulas increases exponentially with n; therefore,
they are not directly applicable to study the behavior of systems where n is
large. However, our formulas lend themselves to derive useful asymptotic
expressions, as we show.Comment: 16 pages, 1 figure. Minor changes. To be published in Journal of
Physics A: Mathematical and Genera
Metal Abundances of KISS Galaxies III. Nebular Abundances for Fourteen Galaxies and the Luminosity-Metallicity Relationship for HII Galaxies
We report results from the third in a series of nebular abundance studies of
emission-line galaxies from the KPNO International Spectroscopic Survey (KISS).
Galaxies with coarse metallicity estimates of 12 + log(O/H) less than 8.2 dex
were selected for observation. Spectra of 14 galaxies, which cover the full
optical region from [OII]3727,3729 to beyond [SII]6717,6731, are presented, and
abundance ratios of N, O, Ne, S, and Ar are computed. The auroral [OIII]4363
line is detected in all 14 galaxies. Oxygen abundances determined through the
direct electron temperature T_e method confirm that the sample is metal-poor
with 7.61 <= 12 + log(O/H) <= 8.32. By using these abundances in conjunction
with other T_e-based measurements from the literature, we demonstrate that HII
galaxies and more quiescent dwarf irregular galaxies follow similar
metallicity-luminosity (L-Z) relationships. The primary difference is a
zero-point shift between the correlations such that HII galaxies are brighter
by an average of 0.8 B magnitudes at a given metallicity. This offset can be
used as evidence to argue that low-luminosity HII galaxies typically undergo
factor of two luminosity enhancements, and starbursts that elevate the
luminosities of their host galaxies by 2 to 3 magnitudes are not as common. We
also demonstrate that the inclusion of interacting galaxies can increase the
scatter in the L-Z relation and may force the observed correlation towards
lower metallicities and/or larger luminosities. This must be taken into account
when attempting to infer metal abundance evolution by comparing local L-Z
relations with ones based on higher redshift samples since the fraction of
interacting galaxies should increase with look-back time.Comment: 36 pages, 5 figures. ApJ, in pres
- …