12 research outputs found

    Development and application of additive manufactured fine grinding tools for the processing of fused silica

    No full text
    The development or the improvement of production processes are necessary aspects, in order to enhance the quality and efficiency in optical manufacturing. This paper presents an approach to manufacture fine grinding tools in a very flexible and efficient way. A new filament composed of polyamide, ZrO2 particles and diamond grains is developed and used in an additive manufacturing process for tool fabrication. The resulting tools are successfully applied in an ultra-fine grinding process on fused silica samples

    Giant Optical Response from Graphene–Plasmonic System

    No full text
    The unique properties of graphene when coupled to plasmonic surfaces render a very interesting physical system with intriguing responses to stimuli such as photons. It promises exciting application potentials such as photodetectors as well as biosensing. With its semimetallic band structure, graphene in the vicinity of metallic nanostructures is expected to lead to non-negligible perturbation of the local distribution of electromagnetic field intensity, an interesting plasmonic resonance process that has not been studied to a sufficient extent. Efforts to enhance optoelectronic responses of graphene using plasmonic structures have been demonstrated with rather modest Raman enhancement factors of less than 100. Here, we examine a novel cooperative graphene–Au nanopyramid system with a remarkable graphene Raman enhancement factor of up to 10<sup>7</sup>. Experimental evidence including polarization-dependent Raman spectroscopy and scanning electron microscopy points to a new origin of a drastically enhanced D-band from sharp folds of graphene near the extremities of the nanostructure that is free of broken carbon bonds. These observations indicate a new approach for obtaining detailed structural and vibrational information on graphene from an extremely localized region. The new physical origin of the D-band offers a realistic possibility of defining active devices in the form of, for example, graphene nanoribbons by engineered graphene folds (also known as wrinkles) to realize edge-disorder-free transport. Furthermore, the addition of graphene made it possible to tailor the biochemical properties of plasmonic surfaces from conventional metallic ones to biocompatible carbon surfaces

    Dislocation-free Ge Nano-crystals via Pattern Independent Selective Ge Heteroepitaxy on Si Nano-Tip Wafers

    Get PDF
    The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO 2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO 2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications

    Prolonged Corrosion Stability of a Microchip Sensor Implant during In Vivo Exposure

    Get PDF
    A microelectronic biosensor was subjected to in vivo exposure by implanting it in the vicinity of m. trapezii (Trapezius muscle) from cattle. The implant is intended for the continuous monitoring of glucose levels, and the study aimed at evaluating the biostability of exposed semiconductor surfaces. The sensor chip was a microelectromechanical system (MEMS) prepared using 0.25 ”m complementary metal–oxide–semiconductor CMOS/BiCMOS technology. Sensing is based on the principle of affinity viscometry with a sensoric assay, which is separated by a semipermeable membrane from the tissue. Outer dimensions of the otherwise hermetically sealed biosensor system were 39 × 49 × 16 mm. The test system was implanted into cattle in a subcutaneous position without running it. After 17 months, the device was explanted and analyzed by comparing it with unexposed chips and systems. Investigations focused on the MEMS chip using SEM, TEM, and elemental analysis by EDX mapping. The sensor chip turned out to be uncorroded and no diminishing of the topmost passivation layer could be determined, which contrasts remarkably with previous results on CMOS biosensors. The negligible corrosive attack is understood to be a side effect of the semipermeable membrane separating the assay from the tissue. It is concluded that the separation has enabled a prolonged biostability of the chip, which will be of relevance for biosensor implants in general

    Adhesive-free bonding for hetero-integration of InP based coupons micro-transfer printed on SiO2 into Complementary Metal-Oxide-Semiconductor backend for Si photonics application on 8” wafer platform

    No full text
    Micro-Transfer printing (”TP) is a promising technique for hetero-integration of III-V materials into Si-based photonic platforms. To enhance the print yield by increasing the adhesion between the III-V material and Si or SiO2 surface, an adhesion promoter like Benzocyclobutene is typically used as interlayer. In this work, we demonstrate ”TP of InP based coupons on SiO2 interlayer without any adhesive interlayer and investigate the mechanism of adhesive free bonding. Source coupons are InP-based coupon stacks on a sacrificial layer that is removed by a chemical wet etch with FeCl3. For the target we fabricated amorphous-Si waveguides on 8” wafer encapsulated by a High Density Plasma SiO2 which was planarized by a chemical mechanical polishing procedure. We used O2 plasma to activate both source and target to increase adhesion between coupon and substrate. To get a better understanding of the bonding mechanism we applied several surface characterization methods. Root mean square roughness of InP and SiO2 was measured by atomic force microscopy before and after plasma activation. The step height of the micro-transfer printed source coupon on the target wafer is estimated by optical step profiler. We used Raman peak position mappings of InP to analyze possible strain and contact angle measurements on SiO2, before and after plasma activation to observe a change in the hydrophilicity of the surface. X-ray Photoelectron Spectroscopy analysis was used to characterize the surface energy states of P2p, In3d, O1s for InP source and Si2p, O1s for SiO2 target. Our results demonstrate direct bonding of InP coupons by means of ”TP without the need of a strain-compensation layer. In this way, a promising route towards Complementary Metal-Oxide-Semiconductor compatible use of ”TP for the hetero-integration of InP is provided
    corecore