322 research outputs found
A two-dimensional model of low-Reynolds number swimming beneath a free surface
Biological organisms swimming at low Reynolds number are often influenced by
the presence of rigid boundaries and soft interfaces. In this paper we present
an analysis of locomotion near a free surface with surface tension. Using a
simplified two-dimensional singularity model, and combining a complex variable
approach with conformal mapping techniques, we demonstrate that the deformation
of a free surface can be harnessed to produce steady locomotion parallel to the
interface. The crucial physical ingredient lies in the nonlinear hydrodynamic
coupling between the disturbance flow created by the swimmer and the free
boundary problem at the fluid surface
Technique to ‘Map' Chromosomal Mosaicism at the Blastocyst Stage
The purpose of this study was to identify a technique that allows for comprehensive chromosome screening (CCS) of individual cells within human blastocysts along with the approximation of their location in the trophectoderm relative to the inner cell mass (ICM). This proof-of-concept study will allow for a greater understanding of chromosomal mosaicism at the blastocyst stage and the mechanisms by which mosaicism arises. One blastocyst was held by a holding pipette and the ICM was removed. While still being held, the blastocyst was further biopsied into quadrants. To separate the individual cells from the biopsied sections, the sections were placed in calcium/magnesium-free medium with serum for 20 min. A holding pipette was used to aspirate the sections until individual cells were isolated. Individual cells from each section were placed into PCR tubes and prepped for aCGH. A total of 18 cells were used for analysis, of which 15 (83.3%) amplified and provided a result and 3 (16.7%) did not. Fifteen cells were isolated from the trophectoderm; 13 (86.7%) provided an aCGH result, while 2 (13.3%) did not amplify. Twelve cells were euploid (46,XY), while 1 was complex abnormal (44,XY), presenting with monosomy 7, 10, 11, 13, and 19, and trisomy 14, 15, and 21. A total of 3 cells were isolated from the ICM; 2 were euploid (46,XY) and 1 did not amplify. Here, we expand on a previously published technique which disassociates biopsied sections of the blastocyst into individual cells. Since the blastocyst sections were biopsied in regard to the position of the ICM, it was possible to reconstruct a virtual image of the blastocyst while presenting each cell's individual CCS results
Preliminary assessment of aneuploidy rates between the polar, mid and mural trophectoderm
The objective of this study is to compare aneuploidy rates between three distinct areas of the human trophectoderm: mural, polar and a region in between these two locations termed the ‘mid’ trophectoderm. This is a cohort study on in vitro fertilization (IVF) patients undergoing comprehensive chromosome screening at the blastocyst stage at a private IVF clinic. All embryos underwent assisted hatching on day 3 with blastocyst biopsy and comprehensive chromosome screening. Biopsied blastocysts were divided into three groups depending on which area (polar, mid, or mural) of the trophectoderm was protruding from the zona pellucida and biopsied. Aneuploidy rates were significantly higher with cells from the polar region of the trophectoderm (56.2%) compared with cells removed from the mural region of the trophectoderm (30.0%; P = 0.0243). A comparison of all three areas combined also showed a decreasing trend, but this did not reach clinical significance, polar (56.2%), mid (47.4%) and mural trophectoderm (30.0%; P = 0.1859). The non-concordance demonstrated between polar and mural trophectoderm can be attributed to biological occurrences including chromosomal mosaicism or procedural differences between embryologists
Association of Blood Biomarkers With Acute Sport-Related Concussion in Collegiate Athletes: Findings From the NCAA and Department of Defense CARE Consortium
Importance:
There is potential scientific and clinical value in validation of objective biomarkers for sport-related concussion (SRC).
Objective:
To investigate the association of acute-phase blood biomarker levels with SRC in collegiate athletes.
Design, Setting, and Participants:
This multicenter, prospective, case-control study was conducted by the National Collegiate Athletic Association (NCAA) and the US Department of Defense Concussion Assessment, Research, and Education (CARE) Consortium from February 20, 2015, to May 31, 2018, at 6 CARE Advanced Research Core sites. A total of 504 collegiate athletes with concussion, contact sport control athletes, and non-contact sport control athletes completed clinical testing and blood collection at preseason baseline, the acute postinjury period, 24 to 48 hours after injury, the point of reporting being asymptomatic, and 7 days after return to play. Data analysis was conducted from March 1 to November 30, 2019.
Main Outcomes and Measures:
Glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light chain, and tau were quantified using the Quanterix Simoa multiplex assay. Clinical outcome measures included the Sport Concussion Assessment Tool-Third Edition (SCAT-3) symptom evaluation, Standardized Assessment of Concussion, Balance Error Scoring System, and Brief Symptom Inventory 18.
Results:
A total of 264 athletes with concussion (mean [SD] age, 19.08 [1.24] years; 211 [79.9%] male), 138 contact sport controls (mean [SD] age, 19.03 [1.27] years; 107 [77.5%] male), and 102 non-contact sport controls (mean [SD] age, 19.39 [1.25] years; 82 [80.4%] male) were included in the study. Athletes with concussion had significant elevation in GFAP (mean difference, 0.430 pg/mL; 95% CI, 0.339-0.521 pg/mL; P < .001), UCH-L1 (mean difference, 0.449 pg/mL; 95% CI, 0.167-0.732 pg/mL; P < .001), and tau levels (mean difference, 0.221 pg/mL; 95% CI, 0.046-0.396 pg/mL; P = .004) at the acute postinjury time point compared with preseason baseline. Longitudinally, a significant interaction (group × visit) was found for GFAP (F7,1507.36 = 16.18, P < .001), UCH-L1 (F7,1153.09 = 5.71, P < .001), and tau (F7,1480.55 = 6.81, P < .001); the interaction for neurofilament light chain was not significant (F7,1506.90 = 1.33, P = .23). The area under the curve for the combination of GFAP and UCH-L1 in differentiating athletes with concussion from contact sport controls at the acute postinjury period was 0.71 (95% CI, 0.64-0.78; P < .001); the acute postinjury area under the curve for all 4 biomarkers combined was 0.72 (95% CI, 0.65-0.79; P < .001). Beyond SCAT-3 symptom score, GFAP at the acute postinjury time point was associated with the classification of athletes with concussion from contact controls (β = 12.298; 95% CI, 2.776-54.481; P = .001) and non-contact sport controls (β = 5.438; 95% CI, 1.676-17.645; P = .005). Athletes with concussion with loss of consciousness or posttraumatic amnesia had significantly higher levels of GFAP than athletes with concussion with neither loss of consciousness nor posttraumatic amnesia at the acute postinjury time point (mean difference, 0.583 pg/mL; 95% CI, 0.369-0.797 pg/mL; P < .001).
Conclusions and Relevance:
The results suggest that blood biomarkers can be used as research tools to inform the underlying pathophysiological mechanism of concussion and provide additional support for future studies to optimize and validate biomarkers for potential clinical use in SRC
Infertility diagnosis has a significant impact on the transcriptome of developing blastocysts
STUDY QUESTION: Is the human blastocyst transcriptome associated with infertility diagnosis, specifically: polycystic ovaries (PCO), male factor (MF) and unexplained (UE)?
SUMMARY ANSWER: The global blastocyst transcriptome was significantly altered in association with a PCO, MF and UE infertility diagnosis.
WHAT IS KNOWN ALREADY: Infertility diagnosis has an impact on the probability for a successful outcome following an IVF cycle. Limited information is known regarding the relationship between a specific infertility diagnosis and blastocyst transcription during preimplantation development.
STUDY DESIGN, SIZE, DURATION: Blastocysts created during infertility treatment from patients with specific infertility diagnoses (PCO, MF and UE) were analyzed for global transcriptome compared to fertile donor oocyte blastocysts (control).
PARTICIPANTS/MATERIALS, SETTING, METHODS: Surplus cryopreserved blastocysts were donated with patient consent and institutional review board approval. Female patients were <38 years old with male patients <40 years old. Blastocysts were grouped according to infertility diagnosis: PCO (n = 50), MF (n = 50), UE (n = 50) and fertile donor oocyte controls (n = 50). Pooled blastocysts were lysed for RNA isolation followed by microarray analysis using the SurePrint G3 Human Gene Expression Microarray. Validation was performed on significant genes of interest using real-time quantitative PCR (RT-qPCR).
MAIN RESULTS AND THE ROLE OF CHANCE: Transcription alterations were observed for all infertility etiologies compared to controls, resulting in differentially expressed genes: PCO = 869, MF = 348 and UE = 473 (P 2-fold). Functional annotation of biological and molecular processes revealed both similarities, as well as differences, across the infertility groups. All infertility etiologies displayed transcriptome alterations in signal transducer activity, receptor binding, reproduction, cell adhesion and response to stimulus. Blastocysts from PCO patients were also enriched for apoptotic genes while MF blastocysts displayed enrichment for genes involved in cancer processes. Blastocysts from couples with unexplained infertility displayed transcription alterations related to various disease states, which included mechanistic target of rapamycin (mTOR) and adipocytokine signaling. RT-qPCR validation confirmed differential gene expression for the following genes: BCL2 like 10 (BCL2L10), heat shock protein family A member 1A (HSPA1A), heat shock protein family A member 1B (HSPA1B), activating transcription factor 3 (ATF3), fibroblast growth factor 9 (FGF9), left-right determination factor 1 (LEFTY1), left-right determination factor 2 (LEFTY2), growth differentiation factor 15 (GDF15), inhibin beta A subunit (INHBA), adherins junctions associated protein 1 (AJAP1), cadherin 9 (CDH9) and laminin subunit alpha 4 (LAMA4) (P 2-fold)
Managing the Socially Marginalized: Attitudes Towards Welfare, Punishment and Race
Welfare and incarceration policies have converged to form a system of governance over socially marginalized groups, particularly racial minorities. In both of these policy areas, rehabilitative and social support objectives have been replaced with a more punitive and restrictive system. The authors examine the convergence in individual-level attitudes concerning welfare and criminal punishment, using national survey data. The authors\u27 analysis indicates a statistically significant relationship between punitive attitudes toward welfare and punishment. Furthermore, accounting for the respondents\u27 racial attitudes explains the bivariate relationship between welfare and punishment. Thus, racial attitudes seemingly link support for punitive approaches to opposition to welfare expenditures. The authors discuss the implications of this study for welfare and crime control policies by way of the conclusion
Compromised global embryonic transcriptome associated with advanced maternal age
Purpose To investigate the global transcriptome and associated embryonic molecular networks impacted with advanced maternal age (AMA).
Methods Blastocysts derived from donor oocyte IVF cycles with no male factor infertility (< 30 years of age) and AMA blastocysts (≥ 42 years) with no other significant female factor infertility or male factor infertility were collected with informed patient consent. RNA sequencing libraries were prepared using the SMARTer® Ultra® Low Kit (Clontech Laboratories) and
sequenced on the Illumina HiSEQ 4000. Bioinformatics included Ingenuity® Pathway Analysis (Qiagen) with ViiA™7 qPCR utilized for gene expression validation (Applied Biosystems).
Results A total of 2688 significant differentially expressed transcripts were identified to distinguish the AMA blastocysts from young, donor controls. 2551 (95%) of these displayed decreased transcription in the blastocysts from older women. Pathway analysis revealed three altered molecular signaling networks known to be critical for embryo and fetal development: CREBBP, ESR1, and SP1. Validation of genes within these networks confirmed the global decreased transcription observed in AMA blastocysts (P < 0.05).
Conclusions A significant, overall decreased global transcriptome was observed in blastocysts from AMA women. The ESR1/SP1/CREBBP pathway, in particular, was found to be a highly significant upstream regulator impacting biological processes that are vital during embryonic patterning and pre-implantation development. These results provide evidence that AMA embryos are compromised on a cell signaling level which can repress the embryo’s ability to proliferate and implant, contributing to a deterioration of reproductive outcomes
The impact of infertility diagnosis on embryo-endometrial dialogue
Initial stages of implantation involve bi-directional molecular crosstalk between the blastocyst and endometrium. This study investigated an association between infertility etiologies, specifically advanced maternal age (AMA) and endometriosis, on the embryo-endometrial molecular dialogue prior to implantation. Co-culture experiments were performed with endometrial epithelial cells (EEC) and cryopreserved day 5 blastocysts (n?=?41???Grade 3BB) donated from patients presenting with AMA or endometriosis, compared to fertile donor oocyte controls. Extracellular vesicles isolated from co-culture supernatant were analyzed for miRNA expression and revealed significant alterations correlating to AMA or endometriosis. Specifically, AMA resulted in 16 miRNAs with increased expression (P???0.05) and strong evidence for negative regulation toward 206 target genes. VEGFA, a known activator of cell adhesion, displayed decreased expression (P???0.05), validating negative regulation by 4 of these increased miRNAs: miR-126; 150; 29a; 29b (P???0.05). In endometriosis patients, a total of 10 significantly altered miRNAs displayed increased expression compared to controls (miR-7b; 9; 24; 34b; 106a; 191; 200b; 200c; 342-3p; 484) (P???0.05), targeting 1014 strong evidence-based genes. Three target genes of miR-106a (CDKN1A, E2F1 and RUNX1) were independently validated. Functional annotation analysis of miRNA-target genes revealed enriched pathways for both infertility etiologies, including disrupted cell cycle regulation and proliferation (P???0.05). These extracellular vesicle-bound secreted miRNAs are key transcriptional regulators in embryo-endometrial dialogue and may be prospective biomarkers of implantation success. One of the limitations of this study is that it was a stimulated, in vitro model and therefore may not accurately reflect the in-vivo environment
Rapid host adaptation by extensive recombination
Experimental investigations into virus recombination can provide valuable insights into the biochemical mechanisms and the evolutionary value of this fundamental biological process. Here, we describe an experimental scheme for studying recombination that should be applicable to any recombinogenic viruses amenable to the production of synthetic infectious genomes. Our approach is based on differences in fitness that generally exist between synthetic chimaeric genomes and the wild-type viruses from which they are constructed. In mixed infections of defective reciprocal chimaeras, selection strongly favours recombinant progeny genomes that recover a portion of wild-type fitness. Characterizing these evolved progeny viruses can highlight both important genetic fitness determinants and the contribution that recombination makes to the evolution of their natural relatives. Moreover, these experiments supply precise information about the frequency and distribution of recombination breakpoints, which can shed light on the mechanistic processes underlying recombination. We demonstrate the value of this approach using the small single-stranded DNA geminivirus, maize streak virus (MSV). Our results show that adaptive recombination in this virus is extremely efficient and can yield complex progeny genomes comprising up to 18 recombination breakpoints. The patterns of recombination that we observe strongly imply that the mechanistic processes underlying rolling circle replication are the prime determinants of recombination breakpoint distributions found in MSV genomes sampled from nature
- …