121 research outputs found

    A Combine On-Line Acoustic Flowmeter and Fluorocarbon Coolant Mixture Analyzer for The ATLAS Silicon Tracker

    Full text link
    An upgrade to the ATLAS silicon tracker cooling control system may require a change from C3F8 (octafluoro-propane) to a blend containing 10-30% of C2F6 (hexafluoro-ethane) to reduce the evaporation temperature and better protect the silicon from cumulative radiation damage with increasing LHC luminosity. Central to this upgrade is a new acoustic instrument for the real-time measurement of the C3F8/C2F6 mixture ratio and flow. The instrument and its Supervisory, Control and Data Acquisition (SCADA) software are described in this paper. The instrument has demonstrated a resolution of 3.10-3 for C3F8/C2F6 mixtures with ~20%C2F6, and flow resolution of 2% of full scale for mass flows up to 30gs-1. In mixtures of widely-differing molecular weight (mw), higher mixture precision is possible: a sensitivity of < 5.10-4 to leaks of C3F8 into the ATLAS pixel detector nitrogen envelope (mw difference 160) has been seen. The instrument has many potential applications, including the analysis of mixtures of hydrocarbons, vapours for semi-conductor manufacture and anaesthesia

    Development of a custom on-line ultrasonic vapour analyzer/flowmeter for the ATLAS inner detector, with application to gaseous tracking and Cherenkov detectors

    Full text link
    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom electronics, currently in use in the ATLAS inner detector, with numerous potential applications. The instrument has demonstrated ~0.3% mixture precision for C3F8/C2F6 mixtures and < 10-4 resolution for N2/C3F8 mixtures. Moderate and high flow versions of the instrument have demonstrated flow resolutions of +/- 2% F.S. for flows up to 250 l.min-1, and +/- 1.9% F.S. for linear flow velocities up to 15 ms-1; the latter flow approaching that expected in the vapour return of the thermosiphon fluorocarbon coolant recirculator being built for the ATLAS silicon tracker.Comment: Paper submitted to TWEPP2012; Topical Workshop on Electronics for Particle Physics, Oxford, UK, September 17-21, 2012. KEYWORDS: Sonar; Saturated fluorocarbons; Flowmetry; Sound velocity, Gas mixture analysis. 8 pages, 7 figure

    Applications and perspectives of ultrasonic multi-gas analysis with simultaneous flowmetry

    Get PDF
    We have developed ultrasonic instrumentation for simultaneous flow and composition measurement in a variety of gas mixtures. Flow and composition are respectively derived from measurements of the difference and average of sound transit times in opposite directions in a flowing process gas. We have developed a sound velocity-based algorithm to compensate for the effects of additional gases, allowing the concentrations of a pair of gases of primary interest to be acoustically measured on top of a varying baseline from ‘third party’ gases whose concentrations in the multi-gas mixture are measured by other means. Several instruments are used in the CERN ATLAS experiment. Three monitor C3F8, (R218), and CO2 coolant leaks into N2-purged environmental envelopes. Precision in molar concentration of better than 2 × 10−5 is routinely seen in mixtures of C3F8 in N2 in the presence of varying known concentrations of CO2. Further instruments monitor air ingress and C3F8 vapor flow (at high mass flows around 1.1 kg s−1) in the 60 kW thermosiphon C3F8 evaporative cooling recirculator. This instrumentation and analysis technique, targeting binary pairs of gases of interest in multi-gas mixtures, is promising for mixtures of anesthetic gases, particularly in the developing area of xenon anesthesia.</jats:p

    Optimization of Ribosome Structure and Function by rRNA Base Modification

    Get PDF
    BACKGROUND: Translating mRNA sequences into functional proteins is a fundamental process necessary for the viability of organisms throughout all kingdoms of life. The ribosome carries out this process with a delicate balance between speed and accuracy. This work investigates how ribosome structure and function are affected by rRNA base modification. The prevailing view is that rRNA base modifications serve to fine tune ribosome structure and function. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, yeast strains deficient in rRNA modifications in the ribosomal peptidyltransferase center were monitored for changes in and translational fidelity. These studies revealed allele-specific sensitivity to translational inhibitors, changes in reading frame maintenance, nonsense suppression and aa-tRNA selection. Ribosomes isolated from two mutants with the most pronounced phenotypic changes had increased affinities for aa-tRNA, and surprisingly, increased rates of peptidyltransfer as monitored by the puromycin assay. rRNA chemical analyses of one of these mutants identified structural changes in five specific bases associated with the ribosomal A-site. CONCLUSIONS/SIGNIFICANCE: Together, the data suggest that modification of these bases fine tune the structure of the A-site region of the large subunit so as to assure correct positioning of critical rRNA bases involved in aa-tRNA accommodation into the PTC, of the eEF-1A•aa-tRNA•GTP ternary complex with the GTPase associated center, and of the aa-tRNA in the A-site. These findings represent a direct demonstration in support of the prevailing hypothesis that rRNA modifications serve to optimize rRNA structure for production of accurate and efficient ribosomes

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Validation of the OAKS prognostic model for acute kidney injury after gastrointestinal surgery

    Get PDF
    Background: Postoperative acute kidney injury (AKI) is a common complication of major gastrointestinal surgery with an impact on short- and long-term survival. No validated system for risk stratification exists for this patient group. This study aimed to validate externally a prognostic model for AKI after major gastrointestinal surgery in two multicentre cohort studies. Methods: The Outcomes After Kidney injury in Surgery (OAKS) prognostic model was developed to predict risk of AKI in the 7 days after surgery using six routine datapoints (age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker). Validation was performed within two independent cohorts: a prospective multicentre, international study (‘IMAGINE’) of patients undergoing elective colorectal surgery (2018); and a retrospective regional cohort study (‘Tayside’) in major abdominal surgery (2011–2015). Multivariable logistic regression was used to predict risk of AKI, with multiple imputation used to account for data missing at random. Prognostic accuracy was assessed for patients at high risk (greater than 20 per cent) of postoperative AKI. Results: In the validation cohorts, 12.9 per cent of patients (661 of 5106) in IMAGINE and 14.7 per cent (106 of 719 patients) in Tayside developed 7-day postoperative AKI. Using the OAKS model, 558 patients (9.6 per cent) were classified as high risk. Less than 10 per cent of patients classified as low-risk developed AKI in either cohort (negative predictive value greater than 0.9). Upon external validation, the OAKS model retained an area under the receiver operating characteristic (AUC) curve of range 0.655–0.681 (Tayside 95 per cent c.i. 0.596 to 0.714; IMAGINE 95 per cent c.i. 0.659 to 0.703), sensitivity values range 0.323–0.352 (IMAGINE 95 per cent c.i. 0.281 to 0.368; Tayside 95 per cent c.i. 0.253 to 0.461), and specificity range 0.881–0.890 (Tayside 95 per cent c.i. 0.853 to 0.905; IMAGINE 95 per cent c.i. 0.881 to 0.899). Conclusion: The OAKS prognostic model can identify patients who are not at high risk of postoperative AKI after gastrointestinal surgery with high specificity.publishedVersionPeer reviewe
    • …
    corecore