5 research outputs found
Comparison Study of Manometric Respirometric Test and Common Chemical Methods in the Determination of BOD bold7 in a Pulp and Paper Mill's Wastewaters
The biological oxygen demand (BOD) test is widely used in many wastewater treatment
plants. The conventional BOD tests are usually time-consuming and the results are often out
of date for process control purposes. The aim of this research was to compare the manometric
respirometric test with common chemical methods in the determination of BOD of wastewater
from a pulp and paper mills as well as to evaluate the BOD 7 values of both wastewaters from the short-term respirometric
measurements. The results showed that there were differences in the BOD7 values of paper mill samples measured by conventional and respirometric
methods. The main cause was found to be the dilution solution used in the conventional
BOD tests. Using the same mineral solution in the respirometric measurements diminished
the difference remarkably. Evaluation of the BOD7 value after two or three days incubation was proved to work very well and
the estimated results were close to measured values (deviations 1%–12%)
Environmental applications of manometric respirometric methods
Abstract
In this work a manometric respirometric measuring system was applied to practical environmental cases related to wastewater management and biodegradation studies of oil-contaminated soils and materials used in landfill structures. Pollution of groundwater, surface water and soils is a worldwide problem. Therefore, tests simulating the biodegradation behaviour of organic compounds in water media and soils have become increasingly important. Respirometric methods provide direct measurement of the oxygen consumed by micro-organisms in biodegradation processes from an air or oxygen-enriched environment in a closed vessel.
Biochemical oxygen demand (BOD) is a crucial environmental parameter used to measure the quality of water and treatment results in wastewater. Generally, BOD is measured with standardised methods, which are usually time-consuming as well as laborious. In this work the manometric respirometric test was compared with conventional BOD tests by determining the BOD of pulp and paper mills as well as domestic wastewater samples. The effect of different factors such as type, amount and pre-treatment of inoculum and the effect of dilution of a sample on the BOD values were also tested. A right dilution was noticed to be the most significant factor affecting the BOD values of the industrial wastewater samples. The mathematic estimation of the BOD7 values from the respirometric data was proved to work reliably after a 2–3 day incubation period. Characterisation of organic fractions of the pulp and paper mill wastewater was carried out with methods including filtration, long term BOD measurements and COD analyses. The most significant observation in characterisation analyses was that a remarkable part of the detected oxygen demand was consumed for the biotransformation of biodegradable fractions into new inert decomposition products, not only for mineralisation of the biodegradable COD fraction.
Biodegradation behaviour of the peat samples with different decomposition rates was studied in order to evaluate the applicable peat types that can be used in landfill structures. Only minor (BOD/ThODÂ <Â 0.4%) biodegradation was observed with compaction peat samples, and the stable state, in which biodegradation stopped, was achieved during a two month period. The manometric respirometric method was also applied for the biodegradation studies in which the effect of the modification of soil properties on biodegradation rates of bio-oils was tested. Modified properties were the nutrient content and the pH of the soil. Fertiliser addition and pH adjustment increased both the BOD/ThOD% values of the model substances and the precision of the measurement. The manometric respirometric method was proved to be an advanced method for simulating biodegradation processes in soil and water media
Studies on the Effects of Certain Soil Properties on the Biodegradation of Oils Determined by the Manometric Respirometric Method
The biodegradability of certain biofuels was studied in the case of forest soils using the manometric respirometric technique, which was proved to be very suitable for untreated, fertilized as well as pH adjusted soils. Experiments carried out in infertile sandy forest soil gave a BOD/ThOD value of 45.1% for a typical model substance, that is, sodium benzoate after a period of 30 days and mineral addition improved the BOD/ThOD value to a value of 76.2%. Rapeseed oil-based chain oil almost did not biodegrade at all in 30 days in nonprocessed soil, and when pH was adjusted to 8.0, the BOD/ThOD value increased slightly to a value of 7.4%. Mineral addition improved the BOD/ThOD value on average to 43.2% after 30 days. The combined mineral addition and pH adjustment together increased the BOD/ThOD value to 75.8% in 30 days. The observations were similar with a rapeseed oil-based lubricating oil: after 30 days, the BOD/ThOD value increased from 5.9% to an average value of 51.9%, when the pH and mineral concentrations of the soil were optimized. The mineral addition and pH adjustment also improved the precision of the measurements significantly