60 research outputs found

    Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime

    Get PDF
    We have demonstrated a recoil-free spectroscopy on the 1S0−3P1{}^1S_0-{}^3P_1 transition of strontium atoms confined in a one-dimensional optical lattice. By investigating the wavelength and polarization dependence of the ac Stark shift acting on the 1S0{}^1S_0 and 3P1(mJ=0){}^3P_1(m_J=0) states, we determined the {\it magic wavelength} where the Stark shifts for both states coincide. The Lamb-Dicke confinement provided by this Stark-free optical lattice enabled the measurement of the atomic spectrum free from Doppler as well as recoil shifts.Comment: 5pages, 4figure

    Decomposed description of Ramsey spectra under atomic interactions

    Get PDF
    We introduce a description of Ramsey spectra under atomic interactions as a sum of decomposed components with differing dependence on interaction parameters. This description enables intuitive understanding of the loss of contrast and asymmetry of Ramsey spectra. We derive a quantitative relationship between the asymmetry and atomic interaction parameters, which enables their characterization without changing atom density. The model is confirmed through experiments with a Yb optical lattice clock

    Colloquium: Physics of optical lattice clocks

    Full text link
    Recently invented and demonstrated, optical lattice clocks hold great promise for improving the precision of modern timekeeping. These clocks aim at the 10^-18 fractional accuracy, which translates into a clock that would neither lose or gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here we discuss the principles of operation of these clocks and, in particular, a novel concept of "magic" trapping of atoms in optical lattices. We also highlight recently proposed microwave lattice clocks and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.Comment: 18 pages, 15 figure

    Spectroscopy of the 1S0−3P0^1S_0-{}^3P_0 Clock Transition of 87^{87}Sr in an Optical Lattice

    Full text link
    We report on the spectroscopy of the 5s21S0(F=9/2)→5s5p3P0(F=9/2)5s^2 {}^1S_0 (F=9/2) \to 5s5p {}^3P_0 (F=9/2) clock transition of 87Sr{}^{87}{\rm Sr} atoms (natural linewidth of 1 mHz) trapped in a one-dimensional optical lattice. Recoilless transitions with a linewidth of 0.7 kHz as well as the vibrational structure of the lattice potential were observed. By investigating the wavelength dependence of the carrier linewidth, we determined the magic wavelength, where the light shift in the clock transition vanishes, to be 813.5±0.9813.5\pm0.9 nm.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett. (09/May/2003

    Lifetime measurement of the ^3P_2 metastable state of strontium atoms

    Full text link
    We have measured the lifetime of the 5s5p ^3P_2 metastable state of strontium atoms by magneto-optically trapping the decayed atoms to the ground state, which allowed sensitive detection of the rare decay events. We found that the blackbody radiation-induced decay was the dominant decay channel for the state at T = 300 K. The lifetime was determined to be 500^{+280}_{-130} s in the limit of zero temperature.Comment: 4 pages, 3 figures, submitted to Physical Review Letter
    • …
    corecore