17 research outputs found

    Transepithelial migration of neutrophils into the lung requires TREM-1

    Get PDF
    Acute respiratory infections are responsible for more than 4 million deaths each year. Neutrophils play an essential role in the innate immune response to lung infection. These cells have an armamentarium of pattern recognition molecules and antimicrobial agents that identify and eliminate pathogens. In the setting of infection, neutrophil triggering receptor expressed on myeloid cells 1 (TREM-1) amplifies inflammatory signaling. Here we demonstrate for the first time that TREM-1 also plays an important role in transepithelial migration of neutrophils into the airspace. We developed a TREM-1/3–deficient mouse model of pneumonia and found that absence of TREM-1/3 markedly increased mortality following Pseudomonas aeruginosa challenge. Unexpectedly, TREM-1/3 deficiency resulted in increased local and systemic cytokine production. TREM-1/3–deficient neutrophils demonstrated intact bacterial killing, phagocytosis, and chemotaxis; however, histologic examination of TREM-1/3–deficient lungs revealed decreased neutrophil infiltration of the airways. TREM-1/3–deficient neutrophils effectively migrated across primary endothelial cell monolayers but failed to migrate across primary airway epithelia grown at the air-liquid interface. These data define a new function for TREM-1 in neutrophil migration across airway epithelial cells and suggest that it amplifies inflammation through targeted neutrophil migration into the lung

    Lunch & Best-Of Ideas in Teaching Practices from Harding ACUE Fellows Panel

    No full text
    In this session, participants will gain practical ideas that can be adopted in their classroom. Each panelist will discuss their experience and present ideas of what was learned through their journey with ACUE and implemented in their classroom or teaching philosophy. There will be ample time for the audience to participate in the form of a Q and A. The panel facilitator is Dr. Kathy Dillion

    Zinc-finger Nucleases as a Novel Therapeutic Strategy for Targeting Hepatitis B Virus DNAs

    No full text
    Hepatitis B virus (HBV) chronically infects 350–400 million people worldwide and causes >1 million deaths yearly. Current therapies prevent new viral genome formation, but do not target pre-existing viral genomic DNA, thus curing only ~1/2 of patients. We targeted HBV DNA for cleavage using zinc-finger nucleases (ZFNs), which cleave as dimers. Co-transfection of our ZFN pair with a target plasmid containing the HBV genome resulted in specific cleavage. After 3 days in culture, 26% of the target remained linear, whereas ~10% was cleaved and misjoined tail-to-tail. Notably, ZFN treatment decreased levels of the hepatitis C virus pregenomic RNA by 29%. A portion of cleaved plasmids are repaired in cells, often with deletions and insertions. To track misrepair, we introduced an XbaI restriction site in the spacer between the ZFN sites. Targeted cleavage and misrepair destroys the XbaI site. After 3 days in culture, ~6% of plasmids were XbaI-resistant. Thirteen of 16 clones sequenced contained frameshift mutations that would lead to truncations of the viral core protein. These results demonstrate, for the first time, the possibility of targeting episomal viral DNA genomes using ZFNs
    corecore