16 research outputs found

    CONTENT ALERTS

    No full text
    This article cites 40 articles, 17 of which can be accessed fre

    Alkoxyalkyl Esters of (S)-9-[3-Hydroxy-2-(Phosphonomethoxy)Propyl]Adenine Are Potent Inhibitors of the Replication of Wild-Type and Drug-Resistant Human Immunodeficiency Virus Type 1 In Vitro

    No full text
    (S)-9-[3-Hydroxy-2-(phosphonomethoxy)propyl]adenine [(S)-HPMPA], is an effective broad-spectrum antiviral against many DNA viruses but has been reported to be inactive against human immunodeficiency virus (HIV). We synthesized several alkoxyalkyl esters of (S)-HPMPA and now report that hexadecyloxypropyl-(S)-HPMPA [HDP-(S)-HPMPA] and octadecyloxyethyl-(S)-HPMPA [ODE-(S)-HPMPA]had 50% effective concentrations of 0.4 to 7.0 nanomolar and were nearly fully active against HIV variants having reverse transcriptase mutations M184V and K103N and against a zidovudine-resistant variant with mutations D67N, K70R, T215Y, and K219Q. Resistance to HDP-(S)-HPMPA and ODE-(S)-HPMPA was noted for a mutant with mutation K65R. HDP-(S)-HPMPA is also active against herpes simplex virus type 1, human cytomegalovirus, hepatitis B virus, adenoviruses, and orthopoxviruses and is worthy of further evaluation as a possibly therapy for HIV infection

    Alkoxyalkyl Esters of Cidofovir and Cyclic Cidofovir Exhibit Multiple-Log Enhancement of Antiviral Activity against Cytomegalovirus and Herpesvirus Replication In Vitro

    No full text
    The incidence of cytomegalovirus (CMV) retinitis is declining in AIDS patients but remains a significant clinical problem in patients with organ transplants and bone marrow transplants. Prophylaxis with ganciclovir (GCV) or valganciclovir reduces the incidence of CMV disease but may lead to the emergence of drug-resistant virus with mutations in the UL97 or UL54 gene. It would be useful to have other types of oral therapy for CMV disease. We synthesized hexadecyloxypropyl and octadecyloxyethyl derivatives of cyclic cidofovir (cCDV) and cidofovir (CDV) and found that these novel analogs had 2.5- to 4-log increases in antiviral activity against CMV compared to the activities of unmodified CDV and cCDV. Multiple-log increases in activity were noted against laboratory CMV strains and various CMV clinical isolates including GCV-resistant strains with mutations in the UL97 and UL54 genes. Preliminary cell studies suggest that the increase in antiviral activity may be partially explained by a much greater cell penetration of the novel analogs. 1-O-Hexadecyloxypropyl-CDV, 1-O-octadecyloxyethyl-CDV, and their corresponding cCDV analogs are worthy of further preclinical evaluation for treatment and prevention of CMV and herpes simplex virus infections in humans

    Antiviral Activities of Novel 5-Phosphono-Pent-2-en-1-yl Nucleosides and Their Alkoxyalkyl Phosphonoesters

    No full text
    Three acyclic nucleoside phosphonates are currently approved for clinical use against infections caused by cytomegalovirus (Vistide), hepatitis B virus (Hepsera), and human immunodeficiency virus type 1 (Viread). This important antiviral class inhibits viral polymerases after cellular uptake and conversion to their diphosphates, bypassing the first phosphorylation, which is required for conventional nucleoside antivirals. Small chemical alterations in the acyclic side chain lead to marked differences in antiviral activity and the spectrum of activity of acyclic nucleoside phosphonates against various classes of viral agents. We synthesized a new class of acyclic nucleoside phosphonates based on a 5-phosphono-pent-2-en-1-yl base motif in which the oxygen heteroatom usually present in acyclic nucleoside phosphonates has been replaced with a double bond. Since the intrinsic phosphonate moiety leads to low oral bioavailability and impaired cellular penetration, we also prepared the hexadecyloxypropyl esters of the 5-phosphono-pent-2-en-1-yl nucleosides. Our earlier work showed that this markedly increases antiviral activity and oral bioavailability. Although the 5-phosphono-pent-2-en-1-yl nucleosides themselves were not active, the hexadecyloxypropyl esters were active against DNA viruses and hepatitis B virus, in vitro. Notably, the hexadecyloxypropyl ester of 9-(5-phosphono-pent-2-en-1-yl)-adenine was active against hepatitis B virus mutants resistant to lamivudine, emtricitabine, and adefovir

    Increased Antiviral Activity of 1- O

    No full text

    Intraocular Safety and Pharmacokinetics of Hexadecyloxypropyl-Cidofovir (HDP-CDV) as a Long-lasting Intravitreal Antiviral Drug

    No full text
    This study demonstrates HDP-CDV, a transport micelle form for use in a crystalline HDP-cCDV intravitreal delivery system, has a long-lasting, slow-release property that may be directly used in intravitreal therapy for cytomegalovirus retinitis
    corecore