22 research outputs found

    A new approach to generating research-quality data through citizen science: The USA National Phenology Monitoring System

    Get PDF
    Phenology is one of the most sensitive biological responses to climate change, and recent changes in phenology have the potential to shake up ecosystems. In some cases, it appears they already are. Thus, for ecological reasons it is critical that we improve our understanding of species’ phenologies and how these phenologies are responding to recent, rapid climate change. Phenological events like flowering and bird migrations are easy to observe, culturally important, and, at a fundamental level, naturally inspire human curiosity— thus providing an excellent opportunity to engage citizen scientists. The USA National Phenology Network has recently initiated a national effort to encourage people at different levels of expertise—from backyard naturalists to professional scientists—to observe phenological events and contribute to a national database that will be used to greatly improve our understanding of spatio-temporal variation in phenology and associated phenological responses to climate change.

Traditional phenological observation protocols identify specific dates at which individual phenological events are observed. The scientific usefulness of long-term phenological observations could be improved with a more carefully structured protocol. At the USA-NPN we have developed a new approach that directs observers to record each day that they observe an individual plant, and to assess and report the state of specific life stages (or phenophases) as occurring or not occurring on that plant for each observation date. Evaluation is phrased in terms of simple, easy-to-understand, questions (e.g. “Do you see open flowers?”), which makes it very appropriate for a citizen science audience. From this method, a rich dataset of phenological metrics can be extracted, including the duration of a phenophase (e.g. open flowers), the beginning and end points of a phenophase (e.g. traditional phenological events such as first flower and last flower), multiple distinct occurrences of phenophases within a single growing season (e.g multiple flowering events, common in drought-prone regions), as well as quantification of sampling frequency and observational uncertainties. These features greatly enhance the utility of the resulting data for statistical analyses addressing questions such as how phenological events vary in time and space, and in response to global change. This new protocol is an important step forward, and its widespread adoption will increase the scientific value of data collected by citizen scientists.
&#xa

    Codesigning a Measure of Person-Centred Coordinated Care to Capture the Experience of the Patient: The Development of the P3CEQ

    Get PDF
    Background: Person-centred coordinated care (P3C) is a priority for stakeholders (ie, patients, carers, professionals, policy makers). As a part of the development of an evaluation framework for P3C, we set out to identify patient-reported experience measures (PREMs) suitable for routine measurement and feedback during the development of services. Methods: A rapid review of the literature was undertaken to identity existing PREMs suitable for the probing person-centred and/or coordinated care. Of 74 measures identified, 7 met our inclusion criteria. We critically examined these against core domains and subdomains of P3C. Measures were then presented to stakeholders in codesign workshops to explore acceptability, utility, and their strengths/weaknesses. Results: The Long-Term Condition 6 questionnaire was preferred for its short length, utility, and tone. However, it lacked key questions in each core domain, and in response to requests from our codesign group, new questions were added to cover consideration as a whole person, coordination, care plans, carer involvement, and a single coordinator. Cognitive interviews, on-going codesign, and mapping to core P3C domains resulted in the refinement of the questionnaire to 11 items with 1 trigger question. The 11-item modified version was renamed the P3C Experiences Questionnaire. Conclusions: Due to a dearth of brief measures available to capture people’s experience of P3C for routine practice, an existing measure was modified using an iterative process of adaption and validation through codesign workshops. Next steps include psychometric validation and modification for people with dementia and learning difficulties.</p

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    The Secondary Production of Ice in Cumulus Experiment (SPICULE)

    No full text
    The secondary ice process (SIP) is a major microphysical process, which can result in rapid enhancement of ice particle concentration in the presence of preexisting ice. SPICULE was conducted to further investigate the effect of collision–coalescence on the rate of the fragmentation of freezing drop (FFD) SIP mechanism in cumulus congestus clouds. Measurements were conducted over the Great Plains and central United States from two coordinated aircraft, the NSF Gulfstream V (GV) and SPEC Learjet 35A, both equipped with state-of-the-art microphysical instrumentation and vertically pointing W- and Ka-band radars, respectively. The GV primarily targeted measurements of subcloud aerosols with subsequent sampling in warm cloud. Simultaneously, the Learjet performed multiple penetrations of the ascending cumulus congestus (CuCg) cloud top. First primary ice was typically detected at temperatures colder than −10°C, consistent with measured ice nucleating particles. Subsequent production of ice via FFD SIP was strongly related to the concentration of supercooled large drops (SLDs), with diameters from about 0.2 to a few millimeters. The concentration of SLDs is directly linked to the rate of collision–coalescence, which depends primarily on the subcloud aerosol size distribution and cloud-base temperature. SPICULE supports previous observational results showing that FFD SIP efficiency could be deduced from the product of cloud-base temperature and maximum diameter of drops measured ~300 m above cloud base. However, new measurements with higher concentrations of aerosol and total cloud-base drop concentrations show an attenuating effect on the rate of coalescence. The SPICULE dataset provides rich material for validation of numerical schemes of collision–coalescence and SIP to improve weather prediction simulations
    corecore