12 research outputs found

    Wages in high-tech start-ups - do academic spin-offs pay a wage premium?

    Full text link
    Due to their origin from universities, academic spin‐offs operate at the forefront of the technological development. Therefore, spin‐offs exhibit a skill‐biased labour demand, i.e. spin‐offs have a high demand for employees with cutting edge knowledge and technical skills. In order to accommodate this demand, spin‐offs may have to pay a relative wage premium compared to other high‐tech start‐ups. However, neither a comprehensive theoretical assessment nor the empirical literature on wages in start‐ups unambiguously predicts the existence and the direction of wage differentials between spin‐offs and non‐spin‐offs. This paper addresses this research gap and examines empirically whether or not spin‐offs pay their employees a wage premium. Using a unique linked employer‐employee data set of German high‐tech start‐ups, we estimate Mincer‐type wage regressions applying the Hausman‐Taylor panel estimator. Our results show that spin‐offs do not pay a wage premium in general. However, a notable exception from this general result is that spin‐offs that commercialise new scientific results or methods provide higher wages to employees with linkages to the university sector – either as university graduates or as student workers

    Short-Term Effects of Lupin vs. Whey Supplementation on Glucose and Insulin Responses to a Standardized Meal in a Randomized Cross-Over Trial

    Get PDF
    Background: Whey protein is known to reduce postprandial glycaemia in people with type 2 diabetes mellitus. Lupin as a vegetable source of protein could be considered as an alternative, as the percentage of vegetarian and vegan consumers is raising. The present study compares the acute glycemic effects of whey and lupin in healthy volunteers following a carbohydrate-rich reference meal. Methods In cross-over design, three standardized meals (reference meal; reference meal + whey; reference meal + lupin) were provided to 12 healthy male and female volunteers, aged between 23 and 33, in a balanced, randomized order. Volunteers’ blood glucose and insulin concentrations were analyzed at baseline and at seven time points following the ingestion of the meals. Results: The supplementation of whey or lupin significantly blunted the postprandial increase in blood glucose concentrations compared to the reference meal (p < 0.001). In the overall statistical analysis, this effect was comparable for whey and lupin [1 AUC whey-lupin = 8%, 0–60 min area under the curve (0–60 min AUC), p = 0.937], with a blunting effect of −46% by whey (p = 0.005, 0–60 min AUC) and of −54% by lupin (p < 0.001, 0–60 min AUC). When comparing whey and lupin data only, the insulin increase was found to be more pronounced for whey protein than for lupin supplementation (1 AUC whey-lupin = 39%, 0–60 min AUC, p = 0.022). However, when comparing the insulin response of each supplementation to the one of the referencemeal, no differences could be detected (whey p = 0.259, 0–60 min AUC; lupin p = 0.275, 0–60 min AUC). Conclusions: Results suggest that lupin and whey can both lower the increase of postprandial blood glucose concentrations to a comparable extent, implying the usability of lupin to reduce postprandial glycaemia. However, the insulin response following the supplementations to a carbohydrate-rich meal seems to differ for these two protein sources

    Atrophy of calf muscles by unloading results in an increase of tissue sodium concentration and fat fraction decrease: a 23Na MRI physiology study

    Get PDF
    Purpose 23Na MRI demonstrated increased tissue sodium concentrations in a number of pathologies. Acute atrophy results in muscle fibre volume shrinking that may result in a relative increase of extracellular volume and might affect sodium concentration. Thus, we hypothesized that local unloading of the calf muscles would lead to a decrease in muscle volume and an increase in muscle tissue sodium concentration. Method One lower leg of 12 healthy male subjects was submitted to a 60 day long period of unloading using the Hephaistos orthosis, while the other leg served as control. 23Na MRI and 2D PD-weighted Dixon turbo spin echo were obtained from the control and orthosis leg using a 3T scanner. For quantification, a sodium reference phantom was used with 10, 20, 30, and 40 mmol/L NaCl solution. Result Tissue sodium concentration (TSC) increased as an effect of unloading in the orthosis leg. Relative increases were 17.4 ± 16.8% (P = 0.005) in gastrocnemius medialis muscle, 11.1 ± 12.5 (P = 0.037) in gastrocnemius lateralis muscle, 16.2 ± 4.7% (P < 0.001) in soleus muscle, 10.0 ± 10.5% (P = 0.009) in the ventral muscle group, and 10.7 ± 10.0% (P = 0.003) in the central muscle group, respectively. TSC in the control leg did not significantly change. In the orthosis leg, muscle volume decreased as follows: medial gastrocnemius muscle: −5.4 ± 8.3% (P = 0.043) and soleus muscle: −7.8 ± 15.0% (P = 0.043). Conclusion Unloading atrophy is associated with an increase in muscle sodium concentration. 23Na MRI is capable of detecting these rather small changes

    Significance (p-values) of the percent decreases in muscle volume and strength induced by wearing the orthosis with and without the countermeasures tested by LME and t-tests (compare Figs 2 and 3).

    No full text
    <p>Significance (p-values) of the percent decreases in muscle volume and strength induced by wearing the orthosis with and without the countermeasures tested by LME and t-tests (compare Figs <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0171562#pone.0171562.g002" target="_blank">2</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0171562#pone.0171562.g003" target="_blank">3</a>).</p
    corecore