7 research outputs found

    Mapping the dynamic high-density lipoprotein synapse

    Full text link
    Background and aims Heterogeneous high-density lipoprotein (HDL) particles, which can contain hundreds of proteins, affect human health and disease through dynamic molecular interactions with cell surface proteins. How HDL mediates its long-range signaling functions and interactions with various cell types is largely unknown. Due to the complexity of HDL, we hypothesize that multiple receptors engage with HDL particles resulting in condition-dependent receptor-HDL interaction clusters at the cell surface. Methods Here we used the mass spectrometry-based and light-controlled proximity labeling strategy LUX-MS in a discovery-driven manner to decode HDL-receptor interactions. Results Surfaceome nanoscale organization analysis of hepatocytes and endothelial cells using LUX-MS revealed that the previously known HDL-binding protein scavenger receptor B1 (SCRB1) is embedded in a cell surface protein community, which we term HDL synapse. Modulating the endothelial HDL synapse, composed of 60 proteins, by silencing individual members, showed that the HDL synapse can be assembled in the absence of SCRB1 and that the members are interlinked. The aminopeptidase N (AMPN) (also known as CD13) was identified as an HDL synapse member that directly influences HDL uptake into the primary human aortic endothelial cells (HAECs). Conclusions Our data indicate that preformed cell surface residing protein complexes modulate HDL function and suggest new theragnostic opportunities

    Smoking, Alcohol, Diabetes, Obesity, Socioeconomic Status, and the Risk of Colorectal Cancer in a Population-Based Case–Control Study

    Get PDF
    Purpose: Although previous research has identified factors that may determine willingness to participate in research, relatively few studies have attempted to quantify the impact non-participation may have on exposure–disease associations. The aims of this study were to (a) investigate the associations between smoking, alcohol, diabetes, obesity, and socioeconomic status and the risk of colorectal cancer in a case–control study (59.7 and 47.2 % response fractions among cases and controls, respectively); and (b) perform sensitivity analyses to examine the possible influence of non-participation. Methods: Logistic regression was used to estimate the exposure–disease associations. We then investigated the associations between various demographic and health factors and the likelihood that an individual would participate in the case–control study and then performed two sensitivity analyses (sampling weights and multiple imputation) to examine whether non-participation bias may have influenced the exposure–disease associations. Results: The exposures alcohol, smoking, and diabetes were associated with an increased risk of colorectal cancer. We found some differences between cases and controls when examining the factors associated with the participation in the study, and in the sensitivity analyses, the exposure–disease associations were slightly attenuated when compared with those from the original analysis. Conclusion: Non-participation may have biased the risk estimates away from the null, but generally not enough to change the conclusions of the study

    Mapping the dynamic high-density lipoprotein synapse

    No full text
    Background and aims: Heterogeneous high-density lipoprotein (HDL) particles, which can contain hundreds of proteins, affect human health and disease through dynamic molecular interactions with cell surface proteins. How HDL mediates its long-range signaling functions and interactions with various cell types is largely unknown. Due to the complexity of HDL, we hypothesize that multiple receptors engage with HDL particles resulting in condition-dependent receptor-HDL interaction clusters at the cell surface. Methods: Here we used the mass spectrometry-based and light-controlled proximity labeling strategy LUX-MS in a discovery-driven manner to decode HDL-receptor interactions. Results: Surfaceome nanoscale organization analysis of hepatocytes and endothelial cells using LUX-MS revealed that the previously known HDL-binding protein scavenger receptor B1 (SCRB1) is embedded in a cell surface protein community, which we term HDL synapse. Modulating the endothelial HDL synapse, composed of 60 proteins, by silencing individual members, showed that the HDL synapse can be assembled in the absence of SCRB1 and that the members are interlinked. The aminopeptidase N (AMPN) (also known as CD13) was identified as an HDL synapse member that directly influences HDL uptake into the primary human aortic endothelial cells (HAECs). Conclusions: Our data indicate that preformed cell surface residing protein complexes modulate HDL function and suggest new theragnostic opportunities.ISSN:0021-915

    A high-resolution anatomical atlas of the transcriptome in the mouse embryo.

    Get PDF
    Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease
    corecore