64 research outputs found
Recommended from our members
Comparing verbal autopsy cause of death findings as determined by physician coding and probabilistic modelling: a public health analysis of 54 000 deaths in Africa and Asia.
BACKGROUND: Coverage of civil registration and vital statistics varies globally, with most deaths in Africa and Asia remaining either unregistered or registered without cause of death. One important constraint has been a lack of fit-for-purpose tools for registering deaths and assigning causes in situations where no doctor is involved. Verbal autopsy (interviewing care-givers and witnesses to deaths and interpreting their information into causes of death) is the only available solution. Automated interpretation of verbal autopsy data into cause of death information is essential for rapid, consistent and affordable processing. METHODS: Verbal autopsy archives covering 54 182 deaths from five African and Asian countries were sourced on the basis of their geographical, epidemiological and methodological diversity, with existing physician-coded causes of death attributed. These data were unified into the WHO 2012 verbal autopsy standard format, and processed using the InterVA-4 model. Cause-specific mortality fractions from InterVA-4 and physician codes were calculated for each of 60 WHO 2012 cause categories, by age group, sex and source. Results from the two approaches were assessed for concordance and ratios of fractions by cause category. As an alternative metric, the Wilcoxon matched-pairs signed ranks test with two one-sided tests for stochastic equivalence was used. FINDINGS: The overall concordance correlation coefficient between InterVA-4 and physician codes was 0.83 (95% CI 0.75 to 0.91) and this increased to 0.97 (95% CI 0.96 to 0.99) when HIV/AIDS and pulmonary TB deaths were combined into a single category. Over half (53%) of the cause category ratios between InterVA-4 and physician codes by source were not significantly different from unity at the 99% level, increasing to 62% by age group. Wilcoxon tests for stochastic equivalence also demonstrated equivalence. CONCLUSIONS: These findings show strong concordance between InterVA-4 and physician-coded findings over this large and diverse data set. Although these analyses cannot prove that either approach constitutes absolute truth, there was high public health equivalence between the findings. Given the urgent need for adequate cause of death data from settings where deaths currently pass unregistered, and since the WHO 2012 verbal autopsy standard and InterVA-4 tools represent relatively simple, cheap and available methods for determining cause of death on a large scale, they should be used as current tools of choice to fill gaps in cause of death data
Profile: Agincourt health and socio-demographic surveillance system.
The Agincourt health and socio-demographic surveillance system (HDSS), located in rural northeast South Africa close to the Mozambique border, was established in 1992 to support district health systems development led by the post-apartheid ministry of health. The HDSS (90 000 people), based on an annual update of resident status and vital events, now supports multiple investigations into the causes and consequences of complex health, population and social transitions. Observational work includes cohorts focusing on different stages along the life course, evaluation of national policy at population, household and individual levels and examination of household responses to shocks and stresses and the resulting pathways influencing health and well-being. Trials target children and adolescents, including promoting psycho-social well-being, preventing HIV transmission and reducing metabolic disease risk. Efforts to enhance the research platform include using automated measurement techniques to estimate cause of death by verbal autopsy, full 'reconciliation' of in- and out-migrations, follow-up of migrants departing the study area, recording of extra-household social connections and linkage of individual HDSS records with those from sub-district clinics. Fostering effective collaborations (including INDEPTH multi-centre work in adult health and ageing and migration and urbanization), ensuring cross-site compatibility of common variables and optimizing public access to HDSS data are priorities
Global Genetic Structure and Molecular Epidemiology of Encapsulated Haemophilus influenzae
A collection of 2,209 isolates of six polysaccharide capsule types of Haemophilus influenzoe, including 1,975 serotype b isolates recovered in 30 countries was characterized for electrophoretically demonstrable allele profiles at 17 metabolic enzyme loci. Two hundred eighty distinct multilocus genotypes were distinguished, and cluster analysis revealed two primary phylogenetic divisions. The population structure of encapsulated H. influenzae is clonal. Currently, most of the invasive disease worldwide is caused by serotype b strains of nine clones, Strains producing serotype c, e, and f capsules belong to single divisions and have no close genetic relationships to strains of other serotypes, Serotype a and b strains occur in both primary phylogenetic divisions, probably as a result of transfer and recombination of serotype-specific sequences of the cap region between clonal lineages. A close genetic relatedness between serotype d isolates and some strains of serotypes a and b was identified, There are strong patterns of geographic variation, on an intercontinental scale, in both the extent of genetic diversity and the clonal composition of populations of encapsulated strains, The analysis suggests that the present distribution of clones is, in part, related to patterns of racial or ethnic differentiation and historical demographic movements of the human host population
Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have
fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in
25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16
regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of
correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP,
while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in
Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium
(LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region.
Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant
enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the
refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa,
an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of
PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent
signals within the same regio
Comparative assessment of methods for short-term forecasts of COVID-19 hospital admissions in England at the local level
Background: Forecasting healthcare demand is essential in epidemic settings, both to inform situational awareness and facilitate resource planning. Ideally, forecasts should be robust across time and locations. During the COVID-19 pandemic in England, it is an ongoing concern that demand for hospital care for COVID-19 patients in England will exceed available resources. Methods: We made weekly forecasts of daily COVID-19 hospital admissions for National Health Service (NHS) Trusts in England between August 2020 and April 2021 using three disease-agnostic forecasting models: a mean ensemble of autoregressive time series models, a linear regression model with 7-day-lagged local cases as a predictor, and a scaled convolution of local cases and a delay distribution. We compared their point and probabilistic accuracy to a mean-ensemble of them all and to a simple baseline model of no change from the last day of admissions. We measured predictive performance using the weighted interval score (WIS) and considered how this changed in different scenarios (the length of the predictive horizon, the date on which the forecast was made, and by location), as well as how much admissions forecasts improved when future cases were known. Results: All models outperformed the baseline in the majority of scenarios. Forecasting accuracy varied by forecast date and location, depending on the trajectory of the outbreak, and all individual models had instances where they were the top- or bottom-ranked model. Forecasts produced by the mean-ensemble were both the most accurate and most consistently accurate forecasts amongst all the models considered. Forecasting accuracy was improved when using future observed, rather than forecast, cases, especially at longer forecast horizons. Conclusions: Assuming no change in current admissions is rarely better than including at least a trend. Using confirmed COVID-19 cases as a predictor can improve admissions forecasts in some scenarios, but this is variable and depends on the ability to make consistently good case forecasts. However, ensemble forecasts can make forecasts that make consistently more accurate forecasts across time and locations. Given minimal requirements on data and computation, our admissions forecasting ensemble could be used to anticipate healthcare needs in future epidemic or pandemic settings
The impact of COVID-19 vaccination in prisons in England and Wales : a metapopulation model
Background: High incidence of cases and deaths due to coronavirus disease 2019 (COVID-19) have been reported in prisons worldwide. This study aimed to evaluate the impact of different COVID-19 vaccination strategies in epidemiologically semi-enclosed settings such as prisons, where staff interact regularly with those incarcerated and the wider community. Methods: We used a metapopulation transmission-dynamic model of a local prison in England and Wales. Two-dose vaccination strategies included no vaccination, vaccination of all individuals who are incarcerated and/or staff, and an age-based approach. Outcomes were quantified in terms of COVID-19-related symptomatic cases, losses in quality-adjusted life-years (QALYs), and deaths. Results: Compared to no vaccination, vaccinating all people living and working in prison reduced cases, QALY loss and deaths over a one-year period by 41%, 32% and 36% respectively. However, if vaccine introduction was delayed until the start of an outbreak, the impact was negligible. Vaccinating individuals who are incarcerated and staff over 50 years old averted one death for every 104 vaccination courses administered. All-staff-only strategies reduced cases by up to 5%. Increasing coverage from 30 to 90% among those who are incarcerated reduced cases by around 30 percentage points. Conclusions: The impact of vaccination in prison settings was highly dependent on early and rapid vaccine delivery. If administered to both those living and working in prison prior to an outbreak occurring, vaccines could substantially reduce COVID-19-related morbidity and mortality in prison settings
Modelling the medium-term dynamics of SARS-CoV-2 transmission in England in the Omicron era
England has experienced a heavy burden of COVID-19, with multiple waves of SARS-CoV-2 transmission since early 2020 and high infection levels following the emergence and spread of Omicron variants since late 2021. In response to rising Omicron cases, booster vaccinations were accelerated and offered to all adults in England. Using a model fitted to more than 2 years of epidemiological data, we project potential dynamics of SARS-CoV-2 infections, hospital admissions and deaths in England to December 2022. We consider key uncertainties including future behavioural change and waning immunity and assess the effectiveness of booster vaccinations in mitigating SARS-CoV-2 disease burden between October 2021 and December 2022. If no new variants emerge, SARS-CoV-2 transmission is expected to decline, with low levels remaining in the coming months. The extent to which projected SARS-CoV-2 transmission resurges later in 2022 depends largely on assumptions around waning immunity and to some extent, behaviour, and seasonality
Changes in social contacts in England during the COVID-19 pandemic between March 2020 and March 2021 as measured by the CoMix survey : a repeated cross-sectional study
Background During: the Coronavirus Disease 2019 (CAU OVID-19): pandemic, the United Kingdom government imposed public health policies in England to reduce social contacts in hopes of curbing virus transmission. We conducted a repeated cross-sectional study to measure contact patterns weekly from March 2020 to March 2021 to estimate the impact of these policies, covering 3 national lockdowns interspersed by periods of less restrictive policies. Methods and findings The repeated cross-sectional survey data were collected using online surveys of representative samples of the UK population by age and gender. Survey participants were recruited by the online market research company Ipsos MORI through internet-based banner and social media ads and email campaigns. The participant data used for this analysis are restricted to those who reported living in England. We calculated the mean daily contacts reported using a (clustered) bootstrap and fitted a censored negative binomial model to estimate age-stratified contact matrices and estimate proportional changes to the basic reproduction number under controlled conditions using the change in contacts as a scaling factor. To put the findings in perspective, we discuss contact rates recorded throughout the year in terms of previously recorded rates from the POLYMOD study social contact study. The survey recorded 101,350 observations from 19,914 participants who reported 466,710 contacts over 53 weeks. We observed changes in social contact patterns in England over time and by participants’ age, personal risk factors, and perception of risk. The mean reported contacts for adults 18 to 59 years old ranged between 2.39 (95% confidence interval [CI] 2.20 to 2.60) contacts and 4.93 (95% CI 4.65 to 5.19) contacts during the study period. The mean contacts for school-age children (5 to 17 years old) ranged from 3.07 (95% CI 2.89 to 3.27) to 15.11 (95% CI 13.87 to 16.41). This demonstrates a sustained decrease in social contacts compared to a mean of 11.08 (95% CI 10.54 to 11.57) contacts per participant in all age groups combined as measured by the POLYMOD social contact study in 2005 to 2006. Contacts measured during periods of lockdowns were lower than in periods of eased social restrictions. The use of face coverings outside the home has remained high since the government mandated use in some settings in July 2020. The main limitations of this analysis are the potential for selection bias, as participants are recruited through internet-based campaigns, and recall bias, in which participants may under- or over-report the number of contacts they have made
- …