34 research outputs found
Atmospheric oxidation chemistry and ozone production: Results from SHARP 2009 in Houston, Texas
This study considers whether spikes in nitrate in snow sampled at Summit, Greenland, from August 2000 to August 2002 are related to solar proton events. After identifying tropospheric sources of nitrate on the basis of correlations with sulfate, ammonium, sodium, and calcium, we use the three-dimensional global Whole Atmosphere Community Climate Model (WACCM) to examine unaccounted for nitrate spikes. Model calculations confirm that solar proton events significantly impact HOx, NOx, and O3 levels in the mesosphere and stratosphere during the weeks and months following the major 9 November 2000 solar proton event. However, solar proton event (SPE)-enhanced NOy calculated within the atmospheric column is too small to account for the observed nitrate peaks in surface snow. Instead, our WACCM results suggest that nitrate spikes not readily accounted for by measurement correlations are likely of anthropogenic origin. These results, consistent with other recent studies, imply that nitrate spikes in ice cores are not suitable proxies for individual SPEs and motivate the need to identify alternative proxies
Nitrate deposition to surface snow at Summit, Greenland, following the 9 November 2000 solar proton event
Abstract This study considers whether spikes in nitrate in snow sampled at Summit, Greenland, from August 2000 to August 2002 are related to solar proton events. After identifying tropospheric sources of nitrate on the basis of correlations with sulfate, ammonium, sodium, and calcium, we use the three-dimensional global Whole Atmosphere Community Climate Model (WACCM) to examine unaccounted for nitrate spikes. Model calculations confirm that solar proton events significantly impact HOx, NOx, and O3 levels in the mesosphere and stratosphere during the weeks and months following the major 9 November 2000 solar proton event. However, solar proton event (SPE)-enhanced NOy calculated within the atmospheric column is too small to account for the observed nitrate peaks in surface snow. Instead, our WACCM results suggest that nitrate spikes not readily accounted for by measurement correlations are likely of anthropogenic origin. These results, consistent with other recent studies, imply that nitrate spikes in ice cores are not suitable proxies for individual SPEs and motivate the need to identify alternative proxies. Key Points A global model simulates nitrate deposition from solar proton events Soluble ion correlations in Summit snow identify tropospheric sources of nitrate Nitrate ions in snow are found not to be a good proxy for solar proton events
A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response
Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers1–4. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy1,3. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors5–9, has not been fully explored. Here we use genetically engineered mouse models to conduct a ‘co-clinical’ trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244)10 increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors6,9,11,12, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial
Background
Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear.
Methods
RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047.
Findings
Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths.
Interpretation
Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population
Stroke, cognitive function, and Alzheimer’s disease
Ischemic stroke is a leading cause of death and disability worldwide. Perhaps more importantly, stroke can lead to various cognitive changes, referred to collectively as vascular cognitive impairment (VCI). In addition, stroke increases the risk of vascular dementia (VaD), which is the most frequently encountered dementia after Alzheimer’s disease (AD). Traditionally, the pathogenic causes and underlying mechanisms of VCI and AD have been considered separate entities. However, several lines of evidence now indicate an overlap between vascular and neurodegenerative causes of dementia. Indeed, vascular factors are now thought to be involved in both VCI and AD. Furthermore, clinical and experimental studies show that ischemic stroke increases the risk of AD, and may influence dementia expression by aggravating Alzheimer’s-associated neuropathology. In this chapter, we begin by briefly summarizing the pathogenesis of stroke, before highlighting current evidence for the involvement of vascular factors in both VCI and AD, with a particular focus on the neurovascular unit. Finally, we will discuss clinical and experimental evidence for poststroke VCI and AD
Effect of gender and sex hormones on vascular oxidative stress
SUMMARY
1. It is well documented that the incidence and severity of several vascular diseases, such as hypertension, atherosclerosis and stroke, are lower in premenopausal women than men of similar age and post-menopausal women. The mechanisms responsible for gender differences in the incidence and severity of vascular disease are not well understood. However, emerging evidence suggests that sex hormone-dependent differences in vascular oxidative stress may play an important role. The aim of the present brief review is to provide an insight into the effect of gender and sex hormones on vascular oxidative stress.
2. When production of reactive oxygen species (ROS) is enhanced and/or their metabolism by anti-oxidant enzymes is impaired, a condition known as ‘oxidative stress’ can develop. Oxidative stress is believed to play an important role in both the initiation and progression of a variety of vascular diseases, including hypertension and atherosclerosis. NADPH oxidases are believed to be the major source of vascular ROS. Moreover, excessive production of ROS by NADPH oxidases has been linked to the development of vascular oxidative stress.
3. Increasing evidence suggests that levels of vascular ROS may be lower in women than men during health and disease. Indeed, the activity and expression of vascular NADPH oxidase is lower in female versus male animals under healthy, hypertensive and atherosclerotic conditions.
4. Gonadal sex hormones may play an important role in the regulation of vascular oxidative stress. For example, oestrogens, which are present in highest levels in premenopausal women, have been reported to lower vascular oxidative stress by modulating the expression and function of NADPH oxidases, as well as anti-oxidant enzymes.
5. Further studies are needed to clarify whether lower vascular oxidative stress in women in fact protects against the initiation and development of vascular disease and to further define the roles of gonadal sex hormones in such an effect. Knowledge gained from these studies may potentially lead to advances in the clinical diagnosis and treatment of vascular disease in both genders
Antibiotic-induced socio-sexual behavioral deficits are reversed via cecal microbiota transplantation but not androgen treatment
Recent evidence has demonstrated a sex-specific role of the gut microbiome on social behavior such as anxiety, possibly driven by a reciprocal relationship between the gut microbiome and gonadal hormones. For instance, gonadal hormones drive sex differences in gut microbiota composition, and certain gut bacteria can produce androgens from glucocorticoids. We thus asked whether the gut microbiome can influence androgen-dependent socio-sexual behaviors. We first treated C57BL/6 mice with broad-spectrum antibiotics (ABX) in drinking water to deplete the gut microbiota either transiently during early development (embryonic day 16-postnatal day [PND] 21) or in adulthood (PND 60–85). We hypothesized that if ABX interferes with androgens, then early ABX would interfere with critical periods for sexual differentiation of brain and thus lead to long-term decreases in males' socio-sexual behavior, while adult ABX would interfere with androgens’ activational effects on behavior. We found that in males but not females, early and adult ABX treatment decreased territorial aggression, and adult ABX also decreased sexual odor preference. We then assessed whether testosterone and/or cecal microbiota transplantation (CMT) via oral gavage could prevent ABX-induced socio-sexual behavioral deficits in adult ABX-treated males. Mice were treated with same- or other-sex control cecum contents or with testosterone for two weeks. While testosterone was not effective in rescuing any behavior, we found that male CMT restored both olfactory preference and aggression in adult ABX male mice, while female CMT restored olfactory preference but not aggression. These results suggest sex-specific effects of the gut microbiome on socio-sexual behaviors, independent of androgens
Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide
Cerebral infarct volume is typically smaller in premenopausal females than in age-matched males after ischemic stroke, but the underlying mechanisms are poorly understood. In this study we provide evidence in mice that this gender difference only occurs when the ischemic brain is reperfused. The limited tissue salvage achieved by reperfusion in male mice is associated with increased expression of proinflammatory proteins, including cyclooxygenase-2 (Cox-2), Nox2, and vascular cell adhesion molecule-1 (VCAM-1), and infiltration of Nox2-containing T lymphocytes into the infarcted brain, whereas such changes are minimal in female mice after ischemia–reperfusion (I-R). Infarct volume after I-R was no greater at 72 h than at 24 h in either gender. Infarct development was Nox2 dependent in male but not in female mice, and Nox2 within the infarct was predominantly localized in T lymphocytes. Stroke resulted in an ∼15-fold increase in Nox2-dependent superoxide production by circulating, but not spleen-derived, T lymphocytes in male mice, and this was ∼sevenfold greater than in female mice. These circulating immune cells may thus represent a major and previously unrecognized source of superoxide in the acutely ischemic and reperfused brain of males (and potentially in postmenopausal females). Our findings provide novel insights into mechanisms that could be therapeutically targeted in acute ischemic stroke patients who receive thrombolysis therapy to induce cerebral reperfusion