25 research outputs found

    Evaluation of Population-Level Changes Associated With the 2021 US Preventive Services Task Force Lung Cancer Screening Recommendations in Community-Based Health Care Systems

    Get PDF
    Importance: The US Preventive Services Task Force (USPSTF) released updated lung cancer screening recommendations in 2021, lowering the screening age from 55 to 50 years and smoking history from 30 to 20 pack-years. These changes are expected to expand screening access to women and racial and ethnic minority groups. Objective: To estimate the population-level changes associated with the 2021 USPSTF expansion of lung cancer screening eligibility by sex, race and ethnicity, sociodemographic factors, and comorbidities in 5 community-based health care systems. Design, Setting, and Participants: This cohort study analyzed data of patients who received care from any of 5 community-based health care systems (which are members of the Population-based Research to Optimize the Screening Process Lung Consortium, a collaboration that conducts research to better understand how to improve the cancer screening processes in community health care settings) from January 1, 2010, through September 30, 2019. Individuals who had complete smoking history and were engaged with the health care system for 12 or more continuous months were included. Those who had never smoked or who had unknown smoking history were excluded. Exposures: Electronic health record-derived age, sex, race and ethnicity, socioeconomic status (SES), comorbidities, and smoking history. Main Outcomes and Measures: Differences in the proportion of the newly eligible population by age, sex, race and ethnicity, Charlson Comorbidity Index, chronic obstructive pulmonary disease diagnosis, and SES as well as lung cancer diagnoses under the 2013 recommendations vs the expected cases under the 2021 recommendations were evaluated using χ2 tests. Results: As of September 2019, there were 341 163 individuals aged 50 to 80 years who currently or previously smoked. Among these, 34 528 had electronic health record data that captured pack-year and quit-date information and were eligible for lung cancer screening according to the 2013 USPSTF recommendations. The 2021 USPSTF recommendations expanded screening eligibility to 18 533 individuals, representing a 53.7% increase. Compared with the 2013 cohort, the newly eligible 2021 population included 5833 individuals (31.5%) aged 50 to 54 years, a larger proportion of women (52.0% [n = 9631]), and more racial or ethnic minority groups. The relative increases in the proportion of newly eligible individuals were 60.6% for Asian, Native Hawaiian, or Pacific Islander; 67.4% for Hispanic; 69.7% for non-Hispanic Black; and 49.0% for non-Hispanic White groups. The relative increase for women was 13.8% higher than for men (61.2% vs 47.4%), and those with a lower comorbidity burden and lower SES had higher relative increases (eg, 68.7% for a Charlson Comorbidity Index score of 0; 61.1% for lowest SES). The 2021 recommendations were associated with an estimated 30% increase in incident lung cancer diagnoses compared with the 2013 recommendations. Conclusions and Relevance: This cohort study suggests that, in diverse health care systems, adopting the 2021 USPSTF recommendations will increase the number of women, racial and ethnic minority groups, and individuals with lower SES who are eligible for lung cancer screening, thus helping to minimize the barriers to screening access for individuals with high risk for lung cancer

    Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1

    Get PDF
    Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value < 1 × 10-5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p < 1 × 10-5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10-10, odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Stage Migration and Lung Cancer Incidence After Initiation of Low-Dose Computed Tomography Screening

    No full text
    INTRODUCTION: Despite evidence from clinical trials of favorable shifts in cancer stage and improvements in lung cancer-specific mortality, the effectiveness of lung cancer screening (LCS) in clinical practice has not been clearly revealed. METHODS: We performed a multicenter cohort study of patients diagnosed with a primary lung cancer between January 1, 2014, and September 30, 2019, at one of four U.S. health care systems. The primary outcome variables were cancer stage distribution and annual age-adjusted lung cancer incidence. The primary exposure variable was receipt of at least one low-dose computed tomography for LCS before cancer diagnosis. RESULTS: A total of 3678 individuals were diagnosed with an incident lung cancer during the study period; 404 (11%) of these patients were diagnosed after initiation of LCS. As screening volume increased, the proportion of patients diagnosed with lung cancer after LCS initiation also rose from 0% in the first quartile of 2014 to 20% in the third quartile of 2019. LCS did not result in a significant change in the overall incidence of lung cancer (average annual percentage change [AAPC]: -0.8 [95% confidence interval (CI): -4.7 to 3.2]) between 2014 and 2018. Stage-specific incidence rates increased for stage I cancer (AAPC = 8.0 [95% CI: 0.8-15.7]) and declined for stage IV disease (AAPC = -6.0 [95% CI: -11.2 to -0.5]). CONCLUSIONS: Implementation of LCS at four diverse health care systems has resulted in a favorable shift to a higher incidence of stage I cancer with an associated decline in stage IV disease. Overall lung cancer incidence did not increase, suggesting a limited impact of overdiagnosis

    Uptake of novel systemic therapy: Real world patterns among adults with advanced non-small cell lung cancer

    No full text
    Introduction/background: Systemic treatment for advanced non-small cell lung cancer (NSCLC) is shifting from platinum-based chemotherapy to immunotherapy and targeted therapies associated with improved survival in clinical trials. As new therapies are approved for use, examining variations in use for treating patients in community practice can generate additional evidence as to the magnitude of their benefit. Patients and methods: We identified 1,442 patients diagnosed with de novo stage IV NSCLC between 3/1/2012 and 12/31/2020. Patient characteristics and treatment patterns are described overall and by type of first- and second-line systemic therapy received. Prevalence ratios estimate the association of patient and tumor characteristics with receipt of first-line therapy. Results: Within 180 days of diagnosis, 949 (66%) patients received first-line systemic therapy, increasing from 53% in 2012 to 71% in 2020 (p = 0.0004). The proportion of patients receiving first-line immunotherapy+/-chemotherapy (IMO) increased from 14%-66% (p<0.0001). Overall, 380 (26%) patients received both first- and second-line treatment, varying by year between 16%-36% (p = 0.18). The proportion of patients receiving second-line IMO increased from 13%-37% (p<0.0001). Older age and current smoking status were inversely associated with receipt of first-line therapy. Higher BMI, receipt of radiation, and diagnosis year were positively associated with receipt of first-line therapy. No association was found for race, ethnicity, or socioeconomic status. Conclusion: The proportion of advanced NSCLC patients receiving first- and second-line treatment increased over time, particularly for IMO treatments. Additional research is needed to better understand the impact of these therapies on patient outcomes, including short-term, long-term, and financial toxicities. Microabstract: Systemic treatment for non-small cell lung cancer (NSCLC) is shifting from platinum-based therapies to immunotherapy and targeted therapies. Using de novo stage IV NSCLC patients identified from 4 healthcare systems, we examine trends in systemic therapy. We saw an increase in the portion of patients receiving any systemic therapy and a sharp increase in the proportion of patients receiving immunotherapy

    Uptake of novel systemic therapy: Real world patterns among adults with advanced non-small cell lung cancer

    No full text
    INTRODUCTION/BACKGROUND: Systemic treatment for advanced non-small cell lung cancer (NSCLC) is shifting from platinum-based chemotherapy to immunotherapy and targeted therapies associated with improved survival in clinical trials. As new therapies are approved for use, examining variations in use for treating patients in community practice can generate additional evidence as to the magnitude of their benefit. PATIENTS AND METHODS: We identified 1,442 patients diagnosed with de novo stage IV NSCLC between 3/1/2012 and 12/31/2020. Patient characteristics and treatment patterns are described overall and by type of first- and second-line systemic therapy received. Prevalence ratios estimate the association of patient and tumor characteristics with receipt of first-line therapy. RESULTS: Within 180 days of diagnosis, 949 (66%) patients received first-line systemic therapy, increasing from 53% in 2012 to 71% in 2020 (p = 0.0004). The proportion of patients receiving first-line immunotherapy+/-chemotherapy (IMO) increased from 14%-66% (p\u3c0.0001). Overall, 380 (26%) patients received both first- and second-line treatment, varying by year between 16%-36% (p = 0.18). The proportion of patients receiving second-line IMO increased from 13%-37% (p\u3c0.0001). Older age and current smoking status were inversely associated with receipt of first-line therapy. Higher BMI, receipt of radiation, and diagnosis year were positively associated with receipt of first-line therapy. No association was found for race, ethnicity, or socioeconomic status. CONCLUSION: The proportion of advanced NSCLC patients receiving first- and second-line treatment increased over time, particularly for IMO treatments. Additional research is needed to better understand the impact of these therapies on patient outcomes, including short-term, long-term, and financial toxicities. MICROABSTRACT: Systemic treatment for non-small cell lung cancer (NSCLC) is shifting from platinum-based therapies to immunotherapy and targeted therapies. Using de novo stage IV NSCLC patients identified from 4 healthcare systems, we examine trends in systemic therapy. We saw an increase in the portion of patients receiving any systemic therapy and a sharp increase in the proportion of patients receiving immunotherapy

    Community-based Lung Cancer Screening Results in Relation to Patient and Radiologist Characteristics: the PROSPR Consortium

    No full text
    RATIONALE: Lung-RADS classification was developed to standardize reporting and management of lung cancer screening using low-dose computed tomography (LDCT). While variation in Lung-RADS distribution between healthcare systems has been reported, it is unclear if this is explained by patient characteristics, radiologist experience with lung cancer screening, or other factors. OBJECTIVE: Our objective was to determine if patient or radiologist factors are associated with Lung-RADS score. METHODS: In the Population-based Research to Optimize the Screening Process (PROSPR) Lung consortium, we conducted a study of patients who received their first screening LDCT at one of the five healthcare systems in the PROSPR Lung Research Center from 5/1/2014 through 12/31/2017. Data on LDCTs, patient factors, and radiologist characteristics were obtained via electronic health records. LDCT findings were categorized using Lung-RADS [negative (1), benign (2), probably benign (3), or suspicious (4)]. We used generalized estimating equations with a multinomial distribution to compare the odds of Lung-RADS 3, and separately Lung-RADS 4, vs. Lung-RADS 1 or 2 and estimated adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between Lung-RADS assignment and patient and radiologist characteristics. RESULTS: Analyses included 8,556 patients; 24% were assigned Lung-RADS 1, 60% Lung-RADS 2,10% Lung-RADS 3, and 5% Lung-RADS 4. Age was positively associated with Lung-RADS 3 (OR=1.02; CI: 1.01-1.03) and 4 (OR=1.03; CI: 1.01-1.05); chronic obstructive pulmonary disease (COPD) was positively associated with Lung-RADS 4 (OR=1.78; 95% CI: 1.45-2.20); obesity was inversely associated with Lung-RADS 3 (OR=0.70; CI: 0.58-0.84) and 4 (OR=0.58; 95% CI: 0.45-0.75). There was no association between sex, race, ethnicity, education, or smoking status and Lung-RADS assignment. Radiologist volume of interpreting screening LDCTs, years in practice, and thoracic specialty were also not associated with Lung-RADS assignment. CONCLUSIONS: Healthcare systems that are comprised of patients with an older age distribution or higher levels of COPD will have a greater proportion of screening LDCTs with Lung-RADS 3 or 4 findings and should plan for additional resources to support appropriate and timely management of noted positive findings
    corecore