581 research outputs found
Modeling and supervisory control design for a combined cycle power plant
The traditional control strategy based on PID controllers may be unsatisfactory when dealing with processes with large time delay and constraints. This paper presents a supervisory model based constrained predictive controller (MPC) for a combined cycle power plant (CCPP). First, a non-linear dynamic model of CCPP using the laws of physics was proposed. Then, the supervisory control using the linear constrained MPC method was designed to tune the performance of the PID controllers by including output constraints and manipulating the set points. This scheme showed excellent tracking and disturbance rejection results and improved performance compared with a stand-alone PID controllerâs scheme
Non-linear observability of activated sludge process models
The main contribution of this paper is to present a non-linear observability analysis method of Activated Sludge Models (ASM), which are used in many control applications. The objective is to reduce the unobservable ASM1 model to an observable one that can be used to implement advanced estimation algorithms. Local observability is achieved under certain operating conditions but failed at some points in the whole domain of definition. Furthermore, piece-wise observability rank test is also performed with three measurements and compared with non-linear observability. Simulation results are presented to demonstrate the proposed method. Copyright © 2005 IFA
Networked PID control design : a pseudo-probabilistic robust approach
Networked Control Systems (NCS) are feedback/feed-forward control systems where control components (sensors, actuators and controllers) are distributed across a common communication network. In NCS, there exist network-induced random delays in each channel. This paper proposes a method to compensate the effects of these delays for the design and tuning of PID controllers. The control design is formulated as a constrained optimization problem and the controller stability and robustness criteria are incorporated as design constraints. The design is based on a polytopic description of the system using a Poisson pdf distribution of the delay. Simulation results are presented to demonstrate the performance of the proposed method
Stability analysis tool for tuning unconstrained decentralized model predicitive controllers
Some processes are naturally suitable to be controlled in a decentralized framework: centralized control solutions are often infeasible in dealing with large scale plants and they are technologically prohibitive when the processes are too fast for the available computational resources. In these cases, the resulting control problem is usually split in many smaller subproblems and the global requirements are guaranteed by means of a proper coordination. The unconstrained decentralized case is here considered and a coordination strategy is proposed for improving the global control performances. This paper present a tool for setting up and tuning a nominally stable decentralized Model Predictive Controller. Numerical examples are proposed for testing and validating the developed technique
Wind turbine control using PI pitch angle controller
This paper suggests two methods to calculate the gains of a proportional-Integral pitch angle controller for a 5 MW wind turbine. The first method is analytical and the second one is based on simulation. Firstly, the power coefficient characteristics for different pitch angles are calculated. Secondly, the output powers vs. rotor speed curves from cut-in to cut-out wind speeds are simulated. The results from first and second analyses used to find the control gains at different wind speeds. Finally, the results are compared using a wind turbine model to determinate turbineâs tracking characteristic
A Current-Dependent Switching Strategy for Si/SiC Hybrid Switch-Based Power Converters
Abstract: Hybrid switches configured by paralleling Silicon (Si) Insulated Gate Bipolar Transistors (IGBT) and Silicon Carbide (SiC) Metal-Oxide Semiconductor Field-Effect Transistors (MOSFET) have been verified to be a high-efficiency cost-effective device concept. In this paper, a current-dependent switching strategy is introduced and implemented to further improve the performance of Si/SiC hybrid switches. This proposed switching strategy is based on a comprehensive consideration of reducing device losses, reliable operation, and overload capability. Based on the utilization of such Si/SiC hybrid switches and the proposed switching strategy, a 15-kW single-phase H-bridge inverter prototype was implemented and tested in the laboratory. Simulation and experimental results are given to verify the performance of the hybrid switches and the new switching strategy
A framework for modelling, simulation and control of integrated urban wastewater system
This paper is concerned with the integrated modelling, and control of urban wastewater systems (UWS) comprising the wastewater treatment plants (WTP), receiving waters (river) and the sewer networks. A unified framework is developed and simple models are used and implemented in Matlab/Simulink to produce a toolbox. Novel linear and nonlinear control structures are then proposed to design integrated control systems to improve the river water quality. A case study is simulated and simulation results are presented to demonstrate the possible improvement that can be achieved using a holistic integrated control system approac
An Advanced Three-Level Active Neutral-Point-Clamped Converter With Improved Fault-Tolerant Capabilities
A resilient fault-tolerant silicon carbide (SiC) three-level power converter topology is introduced based on the traditional active neutral-point-clamped converter. This novel converter topology incorporates a redundant leg to provide fault tolerance during switch open-circuit faults and short-circuit faults. Additionally, the topology is capable of maintaining full output voltage and maximum modulation index in the presence of switch open and short-circuit faults. Moreover, the redundant leg can be employed to share load current with other phase legs to balance thermal stress among semiconductor switches during normal operation. A 25-kW prototype of the novel topology was designed and constructed utilizing 1.2-kV SiC metal-oxide-semiconductor field-effect transistors. Experimental results confirm the anticipated theoretical capabilities of this new three-level converter topology
On an application of extended kalman filtering to activated sludge processes: a benchmark study
The growing demand for performance improvements of urban wastewater system operation coupled with the lack of instrumentation in most wastewater treatment plants motivates the need for non-linear observers to be used as virtual sensors for estimation and control of effluent quality. This paper is focused on the development of a general procedure for on-line monitoring of activated sludge processes, using an extended Kalman filter (EKF) approach. The Activated Sludge Model no.1 (ASM1) is selected to describe the biological processes in the reactor. On-line measurements are corrupted by additive white noise and unknown inputs are modelled using fast Fourier transform (FFT) and spectrum analyses. The given procedure aims at reducing the original ASM1 model to an observable and identifiable model, which can be used for joint non-linear state and parameter estimations. Simulation results are presented to demonstrate the effectiveness of the proposed methods and show that on-line monitoring of SND and XND concentrations is achieved when dynamic input data are used tocharacterize the influent wastewater for the model
Model-based fault detection and isolation for wind turbine
In this paper, a quantitative model based method is proposed for early fault detection and diagnosis of wind turbines. The method is based on designing an observer using a model of the system. The observer innovation signal is monitored to detect faults. For application to the wind turbines, a first principles nonlinear model with pitch angle and torque controllers is developed for simulation and then a simplified state space version of the model is derived for design. The fault detection system is designed and optimized to be most sensitive to system faults and least sensitive to system disturbances and noises. A multiobjective optimization method is then employed to solve this dual problem. Simulation results are presented to demonstrate the performance of the proposed method
- âŠ