1,234 research outputs found

    Navigating University Bureaucracy for Social Change: Transgender & Gender-Nonconforming Students

    Get PDF
    In large university structures, bureaucracy serves to provide academic support and foster student success. Additionally, some argue that with the increasing view of universities as businesses, bureaucracy is ever-growing to serve as the ‘customer support’ for their students. Due to pressures for large university campuses to accommodate more and more students, the bureaucratic offices to serve those students are ever-increasing and ever-diversifying. Regardless of how one may view the purpose of bureaucracy, it has been lauded as an inefficient and frustrating necessity to navigating higher education. This paper will contain an analysis of a large Southern university campus, using the University of South Carolina (Columbia) as the campus of study. This paper will also focus on transgender and gender-nonconforming students as an oppressed subpopulation within large university structures

    Adversarial Discriminative Domain Adaptation

    Full text link
    Adversarial learning methods are a promising approach to training robust deep networks, and can generate complex samples across diverse domains. They also can improve recognition despite the presence of domain shift or dataset bias: several adversarial approaches to unsupervised domain adaptation have recently been introduced, which reduce the difference between the training and test domain distributions and thus improve generalization performance. Prior generative approaches show compelling visualizations, but are not optimal on discriminative tasks and can be limited to smaller shifts. Prior discriminative approaches could handle larger domain shifts, but imposed tied weights on the model and did not exploit a GAN-based loss. We first outline a novel generalized framework for adversarial adaptation, which subsumes recent state-of-the-art approaches as special cases, and we use this generalized view to better relate the prior approaches. We propose a previously unexplored instance of our general framework which combines discriminative modeling, untied weight sharing, and a GAN loss, which we call Adversarial Discriminative Domain Adaptation (ADDA). We show that ADDA is more effective yet considerably simpler than competing domain-adversarial methods, and demonstrate the promise of our approach by exceeding state-of-the-art unsupervised adaptation results on standard cross-domain digit classification tasks and a new more difficult cross-modality object classification task

    Towards Adapting ImageNet to Reality: Scalable Domain Adaptation with Implicit Low-rank Transformations

    Full text link
    Images seen during test time are often not from the same distribution as images used for learning. This problem, known as domain shift, occurs when training classifiers from object-centric internet image databases and trying to apply them directly to scene understanding tasks. The consequence is often severe performance degradation and is one of the major barriers for the application of classifiers in real-world systems. In this paper, we show how to learn transform-based domain adaptation classifiers in a scalable manner. The key idea is to exploit an implicit rank constraint, originated from a max-margin domain adaptation formulation, to make optimization tractable. Experiments show that the transformation between domains can be very efficiently learned from data and easily applied to new categories. This begins to bridge the gap between large-scale internet image collections and object images captured in everyday life environments

    LSDA: Large Scale Detection Through Adaptation

    Full text link
    A major challenge in scaling object detection is the difficulty of obtaining labeled images for large numbers of categories. Recently, deep convolutional neural networks (CNNs) have emerged as clear winners on object classification benchmarks, in part due to training with 1.2M+ labeled classification images. Unfortunately, only a small fraction of those labels are available for the detection task. It is much cheaper and easier to collect large quantities of image-level labels from search engines than it is to collect detection data and label it with precise bounding boxes. In this paper, we propose Large Scale Detection through Adaptation (LSDA), an algorithm which learns the difference between the two tasks and transfers this knowledge to classifiers for categories without bounding box annotated data, turning them into detectors. Our method has the potential to enable detection for the tens of thousands of categories that lack bounding box annotations, yet have plenty of classification data. Evaluation on the ImageNet LSVRC-2013 detection challenge demonstrates the efficacy of our approach. This algorithm enables us to produce a >7.6K detector by using available classification data from leaf nodes in the ImageNet tree. We additionally demonstrate how to modify our architecture to produce a fast detector (running at 2fps for the 7.6K detector). Models and software are available a

    Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings

    Full text link
    Generalizing deep neural networks to new target domains is critical to their real-world utility. In practice, it may be feasible to get some target data labeled, but to be cost-effective it is desirable to select a maximally-informative subset via active learning (AL). We study the problem of AL under a domain shift, called Active Domain Adaptation (Active DA). We empirically demonstrate how existing AL approaches based solely on model uncertainty or diversity sampling are suboptimal for Active DA. Our algorithm, Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings (ADA-CLUE), i) identifies target instances for labeling that are both uncertain under the model and diverse in feature space, and ii) leverages the available source and target data for adaptation by optimizing a semi-supervised adversarial entropy loss that is complementary to our active sampling objective. On standard image classification-based domain adaptation benchmarks, ADA-CLUE consistently outperforms competing active adaptation, active learning, and domain adaptation methods across domain shifts of varying severity

    Detector Discovery in the Wild: Joint Multiple Instance and Representation Learning

    Full text link
    We develop methods for detector learning which exploit joint training over both weak and strong labels and which transfer learned perceptual representations from strongly-labeled auxiliary tasks. Previous methods for weak-label learning often learn detector models independently using latent variable optimization, but fail to share deep representation knowledge across classes and usually require strong initialization. Other previous methods transfer deep representations from domains with strong labels to those with only weak labels, but do not optimize over individual latent boxes, and thus may miss specific salient structures for a particular category. We propose a model that subsumes these previous approaches, and simultaneously trains a representation and detectors for categories with either weak or strong labels present. We provide a novel formulation of a joint multiple instance learning method that includes examples from classification-style data when available, and also performs domain transfer learning to improve the underlying detector representation. Our model outperforms known methods on ImageNet-200 detection with weak labels
    • …
    corecore