5,950 research outputs found

    Experimental Test of Momentum Cooling Model Predictions at COSY and Conclusions for WASA and HESR

    Get PDF
    The High-Energy Storage Ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an anti-proton cooler ring in the momentum range from 1.5 to 15 GeV/c. An important and challenging feature of the new facility is the combination of highly dense phase space cooled beams with internal targets. A detailed numerical and analytical approach to the Fokker-Planck equation for longitudinal filter cooling including the beam - target interaction has been carried out to demonstrate the stochastic cooling capability. To gain confidence in the model predictions a series of experimental stochastic cooling studies with the internal target ANKE at COSY have been carried out. A remarkable agreement between model and experiment was achieved. On this basis longitudinal stochastic cooling simulations were performed to predict the possibilities and limits of cooling when the newly installed WASA Pellet-target is operated.Comment: 17 pages, 11 figures, Talk given at Symposium on Meson Physics at COSY-11 and WASA-at-COSY, Cracow, Poland, 17-22 Jun 200

    An In Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates

    Full text link
    The CO_{2} electro-reduction reaction (CORR) is a promising avenue to convert greenhouse gases into high-value fuels and chemicals, in addition to being an attractive method for storing intermittent renewable energy. Although polycrystalline Cu surfaces have long known to be unique in their capabilities of catalyzing the conversion of CO_{2} to higher-order C1 and C2 fuels, such as hydrocarbons (CH_{4}, C_{2}H_{4} etc.) and alcohols (CH_{3}OH, C_{2}H_{5}OH), product selectivity remains a challenge. In this study, we select three metal catalysts (Pt, Au, Cu) and apply in situ surface enhanced infrared absorption spectroscopy (SEIRAS) and ambient-pressure X-ray photoelectron spectroscopy (APXPS), coupled to density-functional theory (DFT) calculations, to get insight into the reaction pathway for the CORR. We present a comprehensive reaction mechanism for the CORR, and show that the preferential reaction pathway can be rationalized in terms of metal-carbon (M-C) and metal-oxygen (M-O) affinity. We show that the final products are determined by the configuration of the initial intermediates, C-bound and O-bound, which can be obtained from CO_{2} and (H)CO_{3}, respectively. C1 hydrocarbons are produced via OCH_{3, ad} intermediates obtained from O-bound CO_{3, ad} and require a catalyst with relatively high affinity for O-bound intermediates. Additionally, C2 hydrocarbon formation is suggested to result from the C-C coupling between C-bound CO_{ad} and (H)CO_{ad}, which requires an optimal affinity for the C-bound species, so that (H)CO_{ad} can be further reduced without poisoning the catalyst surface. Our findings pave the way towards a design strategy for CORR catalysts with improved selectivity, based on this experimental/theoretical reaction mechanisms that have been identified

    An X-ray measurement of Titan's atmospheric extent from its transit of the Crab Nebula

    Full text link
    Saturn's largest satellite, Titan, transited the Crab Nebula on 5 January 2003. We observed this astronomical event with the {\it Chandra} X-ray Observatory. An ``occultation shadow'' has clearly been detected and is found to be larger than the diameter of Titan's solid surface. The difference gives a thickness for Titan's atmosphere of 880 ±\pm 60 km. This is the first measurement of Titan's atmospheric extent at X-ray wavelengths. The value measured is consistent with or slightly larger than those estimated from earlier Voyager observations at other wavelengths. We discuss the possibility of temporal variations in the thickness of Titan's atmosphere.Comment: 14 pages, 5 figures, AASTeX preprint. Accepted for publication in the Astrophysical Journa

    Pulsed UCN production using a Doppler shifter at J-PARC

    Get PDF
    We have constructed a Doppler-shifter-type pulsed ultra-cold neutron (UCN) source at the Materials and Life Science Experiment Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). Very-cold neutrons (VCNs) with 136-m/s\mathrm{m/s} velocity in a neutron beam supplied by a pulsed neutron source are decelerated by reflection on a m=10 wide-band multilayer mirror, yielding pulsed UCN. The mirror is fixed to the tip of a 2,000-rpm rotating arm moving with 68-m/s\mathrm{m/s} velocity in the same direction as the VCN. The repetition frequency of the pulsed UCN is 8.33 Hz8.33~\mathrm{Hz} and the time width of the pulse at production is 4.4 ms4.4~\mathrm{ms}. In order to increase the UCN flux, a supermirror guide, wide-band monochromatic mirrors, focus guides, and a UCN extraction guide have been newly installed or improved. The 1 MW1~\mathrm{MW}-equivalent count rate of the output neutrons with longitudinal wavelengths longer than 58 nm58~\mathrm{nm} is 1.6×102 cps1.6 \times 10^{2}~\mathrm{cps}, while that of the true UCNs is 80 cps80~\mathrm{cps}. The spatial density at production is 1.4 UCN/cm31.4~\mathrm{UCN/cm^{3}}. This new UCN source enables us to research and develop apparatuses necessary for the investigation of the neutron electric dipole moment (nEDM).Comment: 32 pages, 15 fugures. A grammatical error was fixe

    Gathering Anonymous, Oblivious Robots on a Grid

    Full text link
    We consider a swarm of nn autonomous mobile robots, distributed on a 2-dimensional grid. A basic task for such a swarm is the gathering process: All robots have to gather at one (not predefined) place. A common local model for extremely simple robots is the following: The robots do not have a common compass, only have a constant viewing radius, are autonomous and indistinguishable, can move at most a constant distance in each step, cannot communicate, are oblivious and do not have flags or states. The only gathering algorithm under this robot model, with known runtime bounds, needs O(n2)\mathcal{O}(n^2) rounds and works in the Euclidean plane. The underlying time model for the algorithm is the fully synchronous FSYNC\mathcal{FSYNC} model. On the other side, in the case of the 2-dimensional grid, the only known gathering algorithms for the same time and a similar local model additionally require a constant memory, states and "flags" to communicate these states to neighbors in viewing range. They gather in time O(n)\mathcal{O}(n). In this paper we contribute the (to the best of our knowledge) first gathering algorithm on the grid that works under the same simple local model as the above mentioned Euclidean plane strategy, i.e., without memory (oblivious), "flags" and states. We prove its correctness and an O(n2)\mathcal{O}(n^2) time bound in the fully synchronous FSYNC\mathcal{FSYNC} time model. This time bound matches the time bound of the best known algorithm for the Euclidean plane mentioned above. We say gathering is done if all robots are located within a 2×22\times 2 square, because in FSYNC\mathcal{FSYNC} such configurations cannot be solved

    Exchange Instabilities in Semiconductor Double Quantum Well Systems

    Full text link
    We consider various exchange-driven electronic instabilities in semiconductor double-layer systems in the absence of any external magnetic field. We establish that there is no exchange-driven bilayer to monolayer charge transfer instability in the double-layer systems. We show that, within the unrestricted Hartree-Fock approximation, the low density stable phase (even in the absence of any interlayer tunneling) is a quantum ``pseudospin rotated'' spontaneous interlayer phase coherent spin-polarized symmetric state rather than the classical Ising-like charge-transfer phase. The U(1) symmetry of the double quantum well system is broken spontaneously at this low density quantum phase transition, and the layer density develops quantum fluctuations even in the absence of any interlayer tunneling. The phase diagram for the double quantum well system is calculated in the carrier density--layer separation space, and the possibility of experimentally observing various quantum phases is discussed. The situation in the presence of an external electric field is investigated in some detail using the spin-polarized-local-density-approximation-based self-consistent technique and good agreement with existing experimental results is obtained.Comment: 24 pages, figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng/preprint/ct.uu/ . Revised final version to appear in PR

    Global existence for coupled systems of nonlinear wave and Klein-Gordon equations in three space dimensions

    Full text link
    We consider the Cauchy problem for coupled systems of wave and Klein-Gordon equations with quadratic nonlinearity in three space dimensions. We show global existence of small amplitude solutions under certain condition including the null condition on self-interactions between wave equations. Our condition is much weaker than the strong null condition introduced by Georgiev for this kind of coupled system. Consequently our result is applicable to certain physical systems, such as the Dirac-Klein-Gordon equations, the Dirac-Proca equations, and the Klein-Gordon-Zakharov equations.Comment: 31 pages. The final versio

    Strongly spin-orbit coupled two-dimensional electron gas emerging near the surface of polar semiconductors

    Full text link
    We investigate the two-dimensional (2D) highly spin-polarized electron accumulation layers commonly appearing near the surface of n-type polar semiconductors BiTeX (X = I, Br, and Cl) by angular-resolved photoemission spectroscopy. Due to the polarity and the strong spin-orbit interaction built in the bulk atomic configurations, the quantized conduction-band subbands show giant Rashba-type spin-splitting. The characteristic 2D confinement effect is clearly observed also in the valence-bands down to the binding energy of 4 eV. The X-dependent Rashba spin-orbit coupling is directly estimated from the observed spin-split subbands, which roughly scales with the inverse of the band-gap size in BiTeX.Comment: 15 pages 4 figure
    corecore