33 research outputs found
レチノイン酸は低酸素誘導性因子と協調してヒトiPS細胞由来エリスロポエチン産生細胞のエリスリポエチン産生を制御する
京都大学新制・課程博士博士(医学)甲第23466号医博第4773号新制||医||1053(附属図書館)京都大学大学院医学研究科医学専攻(主査)教授 柳田 素子, 教授 髙折 晃史, 教授 江藤 浩之学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA
In vitro methods to ensure absence of residual undifferentiated human induced pluripotent stem cells intermingled in induced nephron progenitor cells
ヒトiPS細胞から作製した腎前駆細胞に未分化な細胞が残存していないことを確認する方法の開発. 京都大学プレスリリース. 2022-11-16.A new sensitive method to detect for minute amounts of contaminating undifferentiated iPS cells. 京都大学プレスリリース. 2022-11-21.Cell therapies using human induced pluripotent stem cell (hiPSC)-derived nephron progenitor cells (NPCs) are expected to ameliorate acute kidney injury (AKI). However, using hiPSC-derived NPCs clinically is a challenge because hiPSCs themselves are tumorigenic. LIN28A, ESRG, CNMD and SFRP2 transcripts have been used as a marker of residual hiPSCs for a variety of cell types undergoing clinical trials. In this study, by reanalyzing public databases, we found a baseline expression of LIN28A, ESRG, CNMD and SFRP2 in hiPSC-derived NPCs and several other cell types, suggesting LIN28A, ESRG, CNMD and SFRP2 are not always reliable markers for iPSC detection. As an alternative, we discovered a lncRNA marker gene, MIR302CHG, among many known and unknown iPSC markers, as highly differentially expressed between hiPSCs and NPCs, by RNA sequencing and quantitative RT-PCR (qRT-PCR) analyses. Using MIR302CHG as an hiPSC marker, we constructed two assay methods, a combination of magnetic bead-based enrichment and qRT-PCR and digital droplet PCR alone, to detect a small number of residual hiPSCs in NPC populations. The use of these in vitro assays could contribute to patient safety in treatments using hiPSC-derived cells
Retinoic acid regulates erythropoietin production cooperatively with hypoxia-inducible factors in human iPSC-derived erythropoietin-producing cells
Erythropoietin (EPO) is a crucial hormone for erythropoiesis and produced by adult kidneys. Insufficient EPO production in chronic kidney disease (CKD) can cause renal anemia. Although hypoxia-inducible factors (HIFs) are known as a main regulator, the mechanisms of EPO production have not been fully elucidated. In this study, we aimed to examine the roles of retinoic acid (RA) in EPO production using EPO-producing cells derived from human induced pluripotent stem cells (hiPSC-EPO cells) that we previously established. RA augmented EPO production by hiPSC-EPO cells under hypoxia or by treatment with prolyl hydroxylase domain-containing protein (PHD) inhibitors that upregulate HIF signals. Combination treatment with RA and a PHD inhibitor improved renal anemia in vitamin A-depleted CKD model mice. Our findings using hiPSC-EPO cells and CKD model mice may contribute to clarifying the EPO production mechanism and developing efficient therapies for renal anemia
Human iPSC-derived renal collecting duct organoid model cystogenesis in ADPKD
腎集合管オルガノイドを用いた多発性嚢胞腎モデルの作製 iPS創薬により治療薬候補を発見、治験開始へ. 京都大学プレスリリース. 2023-12-01.Developing more advanced renal organoids to model polycystic kidney disease. 京都大学プレスリリース. 2023-12-01.In autosomal dominant polycystic kidney disease (ADPKD), renal cyst lesions predominantly arise from collecting ducts (CDs). However, relevant CD cyst models using human cells are lacking. Although previous reports have generated in vitro renal tubule cyst models from human induced pluripotent stem cells (hiPSCs), therapeutic drug candidates for ADPKD have not been identified. Here, by establishing expansion cultures of hiPSC-derived ureteric bud tip cells, an embryonic precursor that gives rise to CDs, we succeed in advancing the developmental stage of CD organoids and show that all CD organoids derived from PKD1−/− hiPSCs spontaneously develop multiple cysts, clarifying the initiation mechanisms of cystogenesis. Moreover, we identify retinoic acid receptor (RAR) agonists as candidate drugs that suppress in vitro cystogenesis and confirm the therapeutic effects on an ADPKD mouse model in vivo. Therefore, our in vitro CD cyst model contributes to understanding disease mechanisms and drug discovery for ADPKD
The Relationship between Peripheral Nerve Conduction Velocity and Ophthalmological Findings in Type 2 Diabetes Patients with Early Diabetic Retinopathy
Purpose. Nerve conduction velocity (NCV) is an indicator of neuronal damage in the distal segment of the peripheral nerves. Here, we determined the association between NCV and other systemic and ocular clinical findings, in type 2 diabetes patients with early diabetic retinopathy (DR). Methods. This study included 42 eyes of 42 type 2 diabetes patients (median age: 54 years) with no DR or with mild nonproliferative DR. Standard statistical techniques were used to determine associations between clinical findings. Results. Sural sensory conduction velocity (SCV) and tibial motor conduction velocity (MCV) were significantly lower in mild nonproliferative DR patients than patients with no DR (P=0.008 and P=0.01, resp.). Furthermore, logistic regression analyses revealed that sural SCV and tibial MCV were independent factors contributing to the presence of mild nonproliferative DR (OR 0.83, P=0.012 and OR 0.69 P=0.02, resp.). Tibial MCV was correlated with choroidal thickness (CT) (P=0.01), and a multiple regression analysis revealed that age, tibial MCV, and carotid intima-media thickness were independent associating factors with CT (P=0.035, P=0.015, and P=0.008, resp.). Conclusions. Our findings suggest that reduced NCV may be closely associated with early DR in type 2 diabetes patients. Thus, reduced nerve conduction is a potential early biomarker of DR
Evaluation of the effects of a combination of Japanese honey and hydrocolloid dressing on cutaneous wound healing in male mice
The aim of this study was to evaluate the effect of the combined use of Japanese honey and hydrocolloid dressing (HCD) on cutaneous wound healing. Mice were divided into four groups: the Acacia (Japan) + HCD, Manuka (New Zealand) + HCD, Chinese milk vetch (Japan) + HCD, and HCD (control) groups. The mice received two full-thickness wounds. The wounds of the HCD group were covered with HCD, whereas those of the other groups were treated with 0.1 mL of the relevant type of honey, before being covered with HCD. Wound area was significantly smaller in the HCD group than in the Acacia + HCD and Manuka + HCD groups on day 13 and days 8-14, respectively. Moreover, compared with the HCD group, reepithelialization was delayed in the Acacia + HCD group and reepithelialization and collagen deposition were delayed in the Chinese milk vetch + HCD and Manuka + HCD groups. These results indicate that the combined use of Japanese honey and HCD does not promote cutaneous wound healing compared with the use of HCD alone. Thus, this method is probably not useful for promoting healing. © 2015 Kanae Mukai et al
Peroxisome proliferator-activated receptor activity is involved in the osteoblastic differentiation regulated by bone morphogenetic proteins and tumor necrosis factor-α.
Recent studies have suggested possible adverse effects of thiazolidinediones on bone metabolism. However, the detailed mechanism by which the activity of PPAR affects bone formation has not been elucidated. Impaired osteoblastic function due to cytokines is critical for the progression of inflammatory bone diseases. In the present study, we investigated the cellular mechanism by which PPAR actions interact with osteoblast differentiation regulated by BMP and TNF-alpha using mouse myoblastic C2C12 cells. BMP-2 and -4 potently induced the expression of various bone differentiation markers including Runx2, osteocalcin, type-1 collagen and alkaline phosphatase (ALP) in C2C12 cells. When administered in combination with a PPAR alpha agonist (fenofibric acid) but not with a PPAR gamma agonist (pioglitazone), BMP-4 enhanced osteoblast differentiation through the activity of PPAR alpha. The osteoblastic changes induced by BMP-4 were readily suppressed by treatment with TNF-alpha. Interestingly, the activities of PPAR alpha and PPAR gamma agonists reversed the suppression by TNF-alpha of osteoblast differentiation induced by BMP-4. Furthermore, TNF-alpha-induced phosphorylation of MAPKs, NF kappa B, I kappa B and Stat pathways was inhibited in the presence of PPAR alpha and PPAR gamma agonists with reducing TNF-alpha receptor expression. In view of the finding that inhibition of SAPK/JNK. Stat and NF kappa B pathways reversed the TNF-alpha suppression of osteoblast differentiation, we conclude that these cascades are functionally involved in the actions of PPARs that antagonize TNF-alpha-induced suppression of osteoblast differentiation. It was further discovered that the PPAR alpha agonist enhanced BMP-4-induced Smad1/5/8 signaling through downregulation of inhibitory Smad6/7 expression, whereas the PPAR gamma agonist impaired this activity by suppressing BMPRII expression. On the other hand, BMPs increased the expression levels of PPAR alpha and PPAR gamma in the process of osteoblast differentiation. Thus, PPAR alpha actions promote BMP-induced osteoblast differentiation, while both activities of PPAR alpha and PPAR gamma suppress TNF-alpha actions. Collectively, our present data establishes that PPAR activities are functionally involved in modulating the interaction between the BMP system and TNF-alpha receptor signaling that is crucial for bone metabolism