6 research outputs found
The development of non-coding RNA ontology
Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data
A semantics-oriented computational approach to investigate microRNA regulation on glucocorticoid resistance in pediatric acute lymphoblastic leukemia
Abstract Background Acute lymphoblastic leukemia is the most prevalent neoplasia among children. Despite the tremendous achievements of state-of-the-art treatment strategies, drug resistance is still a major cause of chemotherapy failure leading to relapse in pediatric acute lymphoblastic leukemia. The underlying mechanisms of such phenomenon are not yet clear and subject to further exploration. Prior research has shown that microRNAs can act as post-transcriptional regulators of many genes related to drug resistance. However, details of microRNA regulation mechanisms in pediatric acute lymphoblastic leukemia are far from completely understood. Methods We utilized a computational approach based upon emerging biomedical and biological ontologies and semantic technologies to investigate the important roles of microRNA: mRNA regulation on glucocorticoid resistance in pediatric acute lymphoblastic leukemia. In particular, various filtering mechanisms were designed based on the user-provided MeSH term to narrow down the most promising microRNAs in an effective manner. Results During our manual search on background literature, we found a total of 18 candidate microRNAs that possibly regulate glucocorticoid resistance in pediatric acute lymphoblastic leukemia. After the first-round filtering using the Broader-Match option where both the user-provided MeSH term and its direct parent term were utilized, the number of targets for 18 microRNAs was reduced from 232 to 74. During the second-round filtering with the Exact-Match option where only the MeSH term itself was utilized, the number of targets was further reduced to 19. Finally, we conducted semantic searches in the OmniSearch software tool on the five likely regulating microRNAs and identified two most likely microRNAs. Conclusions We successfully identified two microRNAs, hsa-miR-142-3p and hsa-miR-17-5p, which are computationally predicted to closely relate to glucocorticoid resistance, thus potentially serving as novel biomarkers and therapeutic targets in pediatric acute lymphoblastic leukemia
Utilizing Machine Learning Techniques to Predict the Efficacy of Aerobic Exercise Intervention on Young Hypertensive Patients Based on Cardiopulmonary Exercise Testing
Recently, the incidence of hypertension has significantly increased among young adults. While aerobic exercise intervention (AEI) has long been recognized as an effective treatment, individual differences in response to AEI can seriously influence clinicians’ decisions. In particular, only a few studies have been conducted to predict the efficacy of AEI on lowering blood pressure (BP) in young hypertensive patients. As such, this paper aims to explore the implications of various cardiopulmonary metabolic indicators in the field by mining patients’ cardiopulmonary exercise testing (CPET) data before making treatment plans. CPET data are collected “breath by breath” by using an oxygenation analyzer attached to a mask and then divided into four phases: resting, warm-up, exercise, and recovery. To mitigate the effects of redundant information and noise in the CPET data, a sparse representation classifier based on analytic dictionary learning was designed to accurately predict the individual responsiveness to AEI. Importantly, the experimental results showed that the model presented herein performed better than the baseline method based on BP change and traditional machine learning models. Furthermore, the data from the exercise phase were found to produce the best predictions compared with the data from other phases. This study paves the way towards the customization of personalized aerobic exercise programs for young hypertensive patients
The development of non-coding RNA ontology.
Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data. Int J Data Min Bioinform 2016; 15(3):214-232