184 research outputs found

    Annexin A2 in Virus Infection

    Get PDF
    Viral life cycles consist of three main phases: (1) attachment and entry, (2) genome replication and expression, and (3) assembly, maturation, and egress. Each of these steps is intrinsically reliant on host cell factors and processes including cellular receptors, genetic replication machinery, endocytosis and exocytosis, and protein expression. Annexin A2 (AnxA2) is a membrane-associated protein with a wide range of intracellular functions and a recurrent host factor in a variety of viral infections. Spatially, AnxA2 is found in the nucleus and cytoplasm, vesicle-bound, and on the inner and outer leaflet of the plasma membrane. Structurally, AnxA2 exists as a monomer or in complex with S100A10 to form the AnxA2/S100A10 heterotetramer (A2t). Both AnxA2 and A2t have been implicated in a vast array of cellular functions such as endocytosis, exocytosis, membrane domain organization, and translational regulation through RNA binding. Accordingly, many discoveries have been made involving AnxA2 in viral pathogenesis, however, the reported work addressing AnxA2 in virology is highly compartmentalized. Therefore, the purpose of this mini review is to provide information regarding the role of AnxA2 in the lifecycle of multiple epithelial cell-targeting viruses to highlight recurrent themes, identify discrepancies, and reveal potential avenues for future research

    Synopsis of the 6(th )Walker's Cay Colloquium on Cancer Vaccines and Immunotherapy

    Get PDF
    The 6(th )annual Cancer Vaccines and Immunotherapy Colloquium at Walker's Cay was held under the auspices of the Albert B. Sabin Vaccine Institute on March 10–13, 2004. The Colloquium consisted of a select group of 34 scientists representing academia, biotechnology and pharmaceutical industry. The main goal of this gathering was to promote in a peaceful and comfortable environment exchanges between basic and clinical science. The secondary benefit was to inspire novel bench to bedside ventures and at the same time provide feed back about promising and/or disappointing clinical results that could help re-frame some scientific question or guide the design of future trials. Several topics were covered that included tumor antigen discovery and validation, platforms for vaccine development, tolerance, immune suppression and tumor escape mechanisms, adoptive T cell therapy and dendritic cell-based therapies, clinical trials and assessment of response. Here we report salient points raised by speakers or by the audience during animated discussion that followed each individual presentation

    Immunological consequences of using three different clinical/laboratory techniques of emulsifying peptide-based vaccines in incomplete Freund's adjuvant

    Get PDF
    Incomplete Freund's adjuvant (IFA) serves as a carrier for water-in-oil emulsion (W/O) vaccines. The stability of such emulsions greatly affects vaccine safety and efficacy since continued presence of antigen depots at lymphoid organs releasing low-level antigens is known to stimulate a potent immune response and high-level systemic release of antigens can lead to tolerance. W/O emulsions for the purpose of clinical and laboratory peptide-based vaccinations have been prepared using the techniques of syringe extrusion, vortex or high-speed homogenization. There is no consensus in the field over which technique would be best to use and no immunological data are available that compare the three techniques. In this study, we compared the immune responses induced by a peptide-based vaccine prepared using vortex, syringe-extrusion and homogenization. The vaccination led to tumor rejection by mice vaccinated with the peptide-based vaccine prepared using all three techniques. The immunological data from the in vivo cytotoxicity assay showed a trend for lower responses and a higher variability and greater range in the immune responses induced by a vaccine that was emulsified by the vortex or homogenizer techniques as compared to the syringe-extrusion technique. There were statistically significant lower numbers of IFNγ-secreting cells induced when the mice were vaccinated with a peptide-based vaccine emulsion prepared using the vortex compared to the syringe-extrusion technique. At a suboptimal vaccine dose, the mice vaccinated with a peptide-based vaccine emulsion prepared using the vortex technique had the largest tumors compared to the syringe-extrusion or the homogenizer technique. In the setting of a busy pharmacy that prepares peptide-based vaccine emulsions for clinical studies, the vortex technique can still be used but we urge investigators to take special care in their choice of mixing vessels for the vortex technique as that can influence the stability of the emulsion. However, in instances where the optimal dose is unknown, we caution investigators against using the vortex technique to prepare the peptide-based vaccine emulsions. Overall, we report that all three techniques can be used to prepare peptide-based vaccine emulsions under optimal dose conditions and we discuss important details regarding the proper preparation of the emulsions

    Cancer Testis Antigen Vaccination Affords Long-Term Protection in a Murine Model of Ovarian Cancer

    Get PDF
    Sperm protein (Sp17) is an attractive target for ovarian cancer (OC) vaccines because of its over-expression in primary as well as in metastatic lesions, at all stages of the disease. Our studies suggest that a Sp17-based vaccine can induce an enduring defense against OC development in C57BL/6 mice with ID8 cells, following prophylactic and therapeutic treatments. This is the first time that a mouse counterpart of a cancer testis antigen (Sp17) was shown to be expressed in an OC mouse model, and that vaccination against this antigen significantly controlled tumor growth. Our study shows that the CpG-adjuvated Sp17 vaccine overcomes the issue of immunologic tolerance, the major barrier to the development of effective immunotherapy for OC. Furthermore, this study provides a better understanding of OC biology by showing that Th-17 cells activation and contemporary immunosuppressive T-reg cells inhibition is required for vaccine efficacy. Taken together, these results indicate that prophylactic and therapeutic vaccinations can induce long-standing protection against OC and delay tumor growth, suggesting that this strategy may provide additional treatments of human OC and the prevention of disease onset in women with a family history of OC

    Therapy of established B16-F10 melanoma tumors by a single vaccination of CTL/T helper peptides in VacciMax(®)

    Get PDF
    BACKGROUND: Melanoma tumors are known to express antigens that usually induce weak immune responses of short duration. Expression of both tumor-associated antigens p53 and TRP2 by melanoma cells raises the possibility of simultaneously targeting more than one antigen in a therapeutic vaccine. In this report, we show that VacciMax(® )(VM), a novel liposome-based vaccine delivery platform, can increase the immunogenicity of melanoma associated antigens, resulting in tumor elimination. METHODS: C57BL/6 mice bearing B16-F10 melanoma tumors were vaccinated subcutaneously 6 days post tumor implantation with a mixture of synthetic peptides (modified p53: 232–240, TRP-2: 181–188 and PADRE) and CpG. Tumor growth was monitored and antigen-specific splenocyte responses were assayed by ELISPOT. RESULTS: Vaccine formulated in VM increased the number of both TRP2- and p53-specific IFN-γ producing splenocytes following a single vaccination. Vaccine formulated without VM resulted only in enhanced IFN-γ producing splenocytes to one CTL epitopes (TRP2:180–188), suggesting that VM overcomes antigen dominance and enhances immunogenicity of multiple epitopes. Vaccination of mice bearing 6-day old B16-F10 tumors with both TRP2 and p53-peptides formulated in VM successfully eradicated tumors in all mice. A control vaccine which contained all ingredients except liposomes resulted in eradication of tumors in no more than 20% of mice. CONCLUSION: A single administration of VM is capable of inducing an effective CTL response to multiple tumor-associated antigens. The responses generated were able to reject 6-day old B16-F10 tumors

    Rejection of large HPV-16 expressing tumors in aged mice by a single immunization of VacciMax® encapsulated CTL/T helper peptides

    Get PDF
    The incidence of cancer increases significantly in later life, yet few pre-clinical studies of cancer immunotherapy use mice of advanced age. A novel vaccine delivery platform (VacciMax®,VM) is described that encapsulates antigens and adjuvants in multilamellar liposomes in a water-in-oil emulsion. The therapeutic potential of VM-based vaccines administered as a single dose was tested in HLA-A2 transgenic mice of advanced age (48–58 weeks old) bearing large palpable TC1/A2 tumors. The VM-based vaccines contained one or more peptides having human CTL epitopes derived from HPV 16 E6 and E7. VM formulations contained a single peptide, a mixture of four peptides or the same four peptides linked together in a single long peptide. All VM formulations contained PADRE and CpG as adjuvants and ISA51 as the hydrophobic component of the water-in-oil emulsion. VM-formulated vaccines containing the four peptides as a mixture or linked together in one long peptide eradicated 19-day old established tumors within 21 days of immunization. Peptide-specific cytotoxic cellular responses were confirmed by ELISPOT and intracellular staining for IFN-γ producing CD8+ T cells. Mice rendered tumor-free by vaccination were re-challenged in the opposite flank with 10 million HLF-16 tumor cells, another HLA-A2/E6/E7 expressing tumor cell line. None of these mice developed tumors following the re-challenge. In summary, this report describes a VM-formulated therapeutic vaccine with the following unprecedented outcome: a) eradication of large tumors (> 700 mm3) b) in mice of advanced age c) in less than three weeks post-immunization d) following a single vaccination

    Protective CD8+ T-cell responses to cytomegalovirus driven by rAAV/GFP/IE1 loading of dendritic cells

    Get PDF
    Background: Recent studies demonstrate that recombinant adeno-associated virus (rAAV)-based antigen loading of dendritic cells (DCs) generates in vitro, significant and rapid cytotoxic T-lymphocyte (CTL) responses against viral antigens. Methods: We used the rAAV system to induce specific CTLs against CVM antigens for the development of cytomegalovirus HCMV) gene therapy. As an extension of the versatility of the rAAV system, we incorporated immediate-early 1 (IE1), expressed in HCMV. Our rAAV vector induced a strong stimulation of CTLs directed against the HCMV antigen IE1. We then investigated the efficiency of the CTLs in killing IE1 targeted cells. Results: A significant MHC Class I-restricted, anti-IE1-specificCTL killing was demonstrated against IE1 positive peripheral blood mononuclear cells (PBMC) after one, in vitro, stimulation. Conclusion: In summary, single PBMC stimulation with rAAV/IE1 pulsed DCs induces strong antigen specific-CTL generation. CTLs were capable to lyse low doses of peptides pulsed into target cells. These data suggest that AAV-based antigen loading of DCs is highly effective for generating human CTL responses against HCMV antigens
    corecore