194 research outputs found
Numerical Investigation, Including Experimental Validation, of an Axially Blown, Stable Arc in Argon
In this work we present the outcome of a numerical validation study conducted with an arc model developed within a computational fluid dynamics (CFD) tool. The numerical investigations were aimed at reproducing the spatially resolved temperature data obtained with an experiment in which an axially symmetric argon arc was established in the observation region. The full absorption spectrum has been computed for argon and then compressed with minimum loss of information to a relatively small set of bands. The latter has been used for solving the radiative transfer equation in a computationally affordable, yet accurate way. The comparison between the arc temperature simulated with the reduced absorption data and the measured one is presented
Electronic and atomic shell structure in aluminum nanowires
We report experiments on aluminum nanowires in ultra-high vacuum at room
temperature that reveal a periodic spectrum of exceptionally stable structures.
Two "magic" series of stable structures are observed: At low conductance, the
formation of stable nanowires is governed by electronic shell effects whereas
for larger contacts atomic packing dominates. The crossover between the two
regimes is found to be smooth. A detailed comparison of the experimental
results to a theoretical stability analysis indicates that while the main
features of the observed electron-shell structure are similar to those of
alkali and noble metals, a sequence of extremely stable wires plays a unique
role in Aluminum. This series appears isolated in conductance histograms and
can be attributed to "superdeformed" non-axisymmetric nanowires.Comment: 15 pages, 9 figure
The Escape Problem in a Classical Field Theory With Two Coupled Fields
We introduce and analyze a system of two coupled partial differential
equations with external noise. The equations are constructed to model
transitions of monovalent metallic nanowires with non-axisymmetric intermediate
or end states, but also have more general applicability. They provide a rare
example of a system for which an exact solution of nonuniform stationary states
can be found. We find a transition in activation behavior as the interval
length on which the fields are defined is varied. We discuss several
applications to physical problems.Comment: 24 page
Universality in metallic nanocohesion: a quantum chaos approach
Convergent semiclassical trace formulae for the density of states and
cohesive force of a narrow constriction in an electron gas, whose classical
motion is either chaotic or integrable, are derived. It is shown that mode
quantization in a metallic point contact or nanowire leads to universal
oscillations in its cohesive force: the amplitude of the oscillations depends
only on a dimensionless quantum parameter describing the crossover from chaotic
to integrable motion, and is of order 1 nano-Newton, in agreement with recent
experiments. Interestingly, quantum tunneling is shown to be described
quantitatively in terms of the instability of the classical periodic orbits.Comment: corrects spelling of one author name on abstract page (paper is
unchanged
Impact of Stark Shifts on the Radiation Cooling of Cu-Dominated Plasmas
We study the impact of Stark line shifts reported recently for Cu I transitions on the radiative cooling of Cu-dominated plasmas. The observed detuning in absorption between the hot core and cold shell of the arc leads to a reduction in radiation reabsorption compared to the case where Stark line shifts are neglected. Using a modeling based on a phenomenological treatment of the Stark line shift, we show that this reduction is below 2%
Quantum Suppression of the Rayleigh Instability in Nanowires
A linear stability analysis of metallic nanowires is performed in the
free-electron model using quantum chaos techniques. It is found that the
classical instability of a long wire under surface tension can be completely
suppressed by electronic shell effects, leading to stable cylindrical
configurations whose electrical conductance is a magic number 1, 3, 5, 6,...
times the quantum of conductance. Our results are quantitatively consistent
with recent experiments with alkali metal nanowires.Comment: 10 pages, 5 eps figures, updated and expanded, accepted for
publication in "Nonlinearity
On the Stability and Structural Dynamics of Metal Nanowires
This article presents a brief review of the nanoscale free-electron model,
which provides a continuum description of metal nanostructures. It is argued
that surface and quantum-size effects are the two dominant factors in the
energetics of metal nanowires, and that much of the phenomenology of nanowire
stability and structural dynamics can be understood based on the interplay of
these two competing factors. A linear stability analysis reveals that metal
nanocylinders with certain magic conductance values G=1, 3, 6, 12, 17, 23, 34,
42, 51, 67, 78, 96, ... times the conductance quantum are exceptionally stable.
A nonlinear dynamical simulation of nanowire structural evolution reveals a
universal equilibrium shape consisting of a magic cylinder suspended between
unduloidal contacts. The lifetimes of these metastable structures are also
computed.Comment: 8 pages, 6 figure
Giant Thermoelectric Effect from Transmission Supernodes
We predict an enormous order-dependent quantum enhancement of thermoelectric
effects in the vicinity of a higher-order `supernode' in the transmission
spectrum of a nanoscale junction. Single-molecule junctions based on
3,3'-biphenyl and polyphenyl ether (PPE) are investigated in detail. The
nonequilibrium thermodynamic efficiency and power output of a thermoelectric
heat engine based on a 1,3-benzene junction are calculated using many-body
theory, and compared to the predictions of the figure-of-merit ZT.Comment: 5 pages, 6 figure
- …