792 research outputs found
Dust Emission from Evolved and Unevolved HII Regions in the Large Magellanic Cloud
We present a study of the dust properties of 12 classical and superbubble HII
regions in the Large Magellanic Cloud. We use infrared photometry from Spitzer
(8, 24, 70, and 160 \mum bands), obtained as part of the Surveying the Agents
of a Galaxy's Evolution (SAGE) program, along with archival spectroscopic
classifications of the ionizing stars to examine the role of stellar sources on
dust heating and processing. Our infrared observations show surprisingly little
correlation between the emission properties of the dust and the effective
temperatures or bolometric magnitudes of stars in the HII regions, suggesting
that the HII region evolutionary timescale is not on the order of the dust
processing timescale. We find that the infrared emission of superbubbles and
classical HII regions shows little differentiation between the two classes,
despite the significant differences in age and morphology. We do detect a
correlation of the 24 \mum emission from hot dust with the ratio of 70 to 160
\mum flux. This correlation can be modeled as a trend in the temperature of a
minority hot dust component, while a majority of the dust remains significantly
cooler.Comment: 15 pages, 5 figures. Accepted to Ap
The MOSFIRE Deep Evolution Field (MOSDEF) Survey: Rest-Frame Optical Spectroscopy for ~1500 H-Selected Galaxies at 1.37 < z < 3.8
In this paper we present the MOSFIRE Deep Evolution Field (MOSDEF) survey.
The MOSDEF survey aims to obtain moderate-resolution (R=3000-3650) rest-frame
optical spectra (~3700-7000 Angstrom) for ~1500 galaxies at 1.37<z<3.80 in
three well-studied CANDELS fields: AEGIS, COSMOS, and GOODS-N. Targets are
selected in three redshift intervals: 1.37<z<1.70, 2.09<z<2.61, and
2.95<z<3.80, down to fixed H_AB (F160W) magnitudes of 24.0, 24.5 and 25.0,
respectively, using the photometric and spectroscopic catalogs from the 3D-HST
survey. We target both strong nebular emission lines (e.g., [OII], Hbeta,
[OIII], 5008, Halpha, [NII], and [SII]) and stellar continuum and absorption
features (e.g., Balmer lines, Ca-II H and K, Mgb, 4000 Angstrom break). Here we
present an overview of our survey, the observational strategy, the data
reduction and analysis, and the sample characteristics based on spectra
obtained during the first 24 nights. To date, we have completed 21 masks,
obtaining spectra for 591 galaxies. For ~80% of the targets we derive a robust
redshift from either emission or absorption lines. In addition, we confirm 55
additional galaxies, which were serendipitously detected. The MOSDEF galaxy
sample includes unobscured star-forming, dusty star-forming, and quiescent
galaxies and spans a wide range in stellar mass (~10^9-10^11.5 Msol) and star
formation rate (~10^0-10^3 Msol/yr). The spectroscopically confirmed sample is
roughly representative of an H-band limited galaxy sample at these redshifts.
With its large sample size, broad diversity in galaxy properties, and wealth of
available ancillary data, MOSDEF will transform our understanding of the
stellar, gaseous, metal, dust, and black hole content of galaxies during the
time when the universe was most active.Comment: Accepted for publication in ApJS; 28 pages, 19 figures; MOSDEF
spectroscopic redshifts available at
http://mosdef.astro.berkeley.edu/Downloads.htm
Spitzer Mapping of PAHs and H2 in Photodissociation Regions
The mid-infrared (MIR) spectra of dense photodissociation regions (PDRs) are
typically dominated by emission from polycyclic aromatic hydrocarbons (PAHs)
and the lowest pure rotational states of molecular hydrogen (H2); two species
which are probes of the physical properties of gas and dust in intense UV
radiation fields. We utilize the high angular resolution of the Infrared
Spectrograph on the Spitzer Space Telescope to construct spectral maps of the
PAH and H2 features for three of the best studied PDRs in the galaxy, NGC 7023,
NGC 2023 and IC 63. We present spatially resolved maps of the physical
properties, including the H2 ortho-to-para ratio, temperature, and G_o/n_H. We
also present evidence for PAH dehydrogenation, which may support theories of H2
formation on PAH surfaces, and a detection of preferential self-shielding of
ortho-H2. All PDRs studied exhibit average temperatures of ~500 - 800K, warm H2
column densities of ~10^20 cm^-2, G_o/n_H ~ 0.1 - 0.8, and ortho-to-para ratios
of ~ 1.8. We find that while the average of each of these properties is
consistent with previous single value measurements of these PDRs, when
available, the addition of spatial resolution yields a diversity of values with
gas temperatures as high as 1500 K, column densities spanning ~ 2 orders of
magnitude, and extreme ortho-to-para ratios of 3.Comment: 14 figure
Assessment of Biomass of Leaves of Water Hyacinth (Eichhornia crassipes) as Reducing Agents for the Synthesis of Nanoparticles of Gold and Silver
Green chemistry methods for nanoparticles synthesis have implemented the valorization of renewable waste that reduces the use of chemicals and sub-products to minimize the environmental impact. Herein, we report a method to synthesize Ag and Au nanoparticles (AgNPs, AuNPs) using one of the world´s worst aquatic weeds, water hyacinth. From a reaction between a solution of AgNO3 or HAuCl4 and controlling the pH, the nanoparticles were synthesized. The optimum pH value to obtained uniform quantum dots was found to be acidic for AgNPs and neutral for AuNPs. The size was highly dependent on pH for AgNPs, a smaller size was for acidic pH, and the larger size was for basic pH, and cubic and hexagonal are the predominant structures, no dependent was observed in AuNPs, and orthorhombic is the most common form. This method was sustainable because water hyacinth is a renewable resource in all world, and their use is not being exploited in any process. The bioreduction process using water hyacinth promotes the metallic nanoparticles formation and applied standard conditions for temperature and pressure. Also, the rate of synthesis is fast
A contemporaneous infrared flash from a long gamma-ray burst: an echo from the central engine
The explosion that results in a cosmic gamma-ray burst (GRB) is thought to
produce emission from two physical processes -- the activity of the central
engine gives rise to the high-energy emission of the burst through internal
shocking and the subsequent interaction of the flow with the external
environment produces long-wavelength afterglow. While afterglow observations
continue to refine our understanding of GRB progenitors and relativistic
shocks, gamma-ray observations alone have not yielded a clear picture of the
origin of the prompt emission nor details of the central engine. Only one
concurrent visible-light transient has been found and was associated with
emission from an external shock. Here we report the discovery of infrared (IR)
emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of
GRB 041219a. Our robotic telescope acquired 21 images during the active phase
of the burst, yielding the earliest multi-colour observations of any
long-wavelength emission associated with a GRB. Analysis of an initial IR pulse
suggests an origin consistent with internal shocks. This opens a new
possibility to study the central engine of GRBs with ground-based observations
at long wavelengths.Comment: Accepted to Nature on March 1, 2005. 9 pages, 4 figures, nature12.cls
and nature1.cls files included. This paper is under press embargo until print
publicatio
Carbon chemistry in Galactic Bulge Planetary Nebulae
Galactic Bulge Planetary Nebulae show evidence of mixed chemistry with
emission from both silicate dust and PAHs. This mixed chemistry is unlikely to
be related to carbon dredge up, as third dredge-up is not expected to occur in
the low mass Bulge stars. We show that the phenomenon is widespread, and is
seen in 30 nebulae out of 40 of our sample, selected on the basis of their
infrared flux. HST images and UVES spectra show that the mixed chemistry is not
related to the presence of emission-line stars, as it is in the Galactic disk
population. We also rule out interaction with the ISM as origin of the PAHs.
Instead, a strong correlation is found with morphology, and the presence of a
dense torus. A chemical model is presented which shows that hydrocarbon chains
can form within oxygen-rich gas through gas-phase chemical reactions. The model
predicts two layers, one at where small hydrocarbons form from
reactions with C, and one at , where larger chains (and by
implication, PAHs) form from reactions with neutral, atomic carbon. These
reactions take place in a mini-PDR. We conclude that the mixed chemistry
phenomenon occurring in the Galactic Bulge Planetary Nebulae is best explained
through hydrocarbon chemistry in an UV-irradiated, dense torus.Comment: 13 pages, 10 figue
Inhibition of Y1 receptor signaling improves islet transplant outcome
Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in β-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in β- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.info:eu-repo/semantics/publishe
Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z2: High velocity dispersions in progenitors of compact quiescent galaxies
We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13
compact star-forming galaxies (SFGs) at redshift with star
formation rates of SFR100M y and masses of
log(M/M). Their high integrated gas velocity dispersions of
=230 km s, as measured from emission
lines of H and [OIII], and the resultant
M relation and MM all
match well to those of compact quiescent galaxies at , as measured from
stellar absorption lines. Since log(M/M)
dex, these compact SFGs appear to be dynamically relaxed and more evolved,
i.e., more depleted in gas and dark matter (13\%) than their
non-compact SFG counterparts at the same epoch. Without infusion of external
gas, depletion timescales are short, less than 300 Myr. This discovery
adds another link to our new dynamical chain of evidence that compact SFGs at
are already losing gas to become the immediate progenitors of
compact quiescent galaxies by .Comment: 12 pages, 7 figures, submitted to Ap
Operational Performance of MOSFIRE with Its Cryogenic Configurable Slitmask Unit at the W. M. Keck Observatory
The Multi-Object Spectrograph for Infrared Exploration (MOSFIRE) achieved first light on the W. M. Keck Observatory’s Keck I telescope on 4 April 2012 and quickly became the most popular Keck I instrument. One of the primary reasons for the instrument’s popularity is that it uses a configurable slitmask unit developed by the Centre Suisse d’Electronique et Microtechnique (CSEM SA) to isolate the light from up to 46 objects simultaneously. In collaboration with the instrument development team and CSEM engineers, the Keck observatory staff present how MOSFIRE is successfully used, and we identify what contributed to routine and trouble free nighttime operations
- …
