52 research outputs found
Bio-Inspired Amphiphilic Block-Copolymers Based on Synthetic Glycopolymer and Poly(Amino Acid) as Potential Drug Delivery Systems
In this work, a method to prepare hybrid amphiphilic block copolymers consisting of biocompatible synthetic glycopolymer with non-degradable backbone and biodegradable poly(amino acid) (PAA) was developed. The glycopolymer, poly(2-deoxy-2-methacrylamido-D-glucose) (PMAG), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Two methods for modifying the terminal dithiobenzoate-group of PMAG was investigated to obtain the macroinitiator bearing a primary aliphatic amino group, which is required for ring-opening polymerization of N-carboxyanhydrides of hydrophobic α-amino acids. The synthesized amphiphilic block copolymers were carefully analyzed using a set of different physico-chemical methods to establish their composition and molecular weight. The developed amphiphilic copolymers tended to self-assemble in nanoparticles of different morphology that depended on the nature of the hydrophobic amino acid present in the copolymer. The hydrodynamic diameter, morphology, and cytotoxicity of polymer particles based on PMAG-b-PAA were evaluated using dynamic light scattering (DLS) and transmission electron microscopy (TEM), as well as CellTiter-Blue (CTB) assay, respectively. The redox-responsive properties of nanoparticles were evaluated in the presence of glutathione taken at different concentrations. Moreover, the encapsulation of paclitaxel into PMAG-b-PAA particles and their cytotoxicity on human lung carcinoma cells (A549) and human breast adenocarcinoma cells (MCF-7) were studied
Civil law regulation of investments in the digital infrastructure of the construction industry
Civil law regulation of investments combines regulations from different industry sectors and is characterized by its complexity. An efficient type of investment in the digital infrastructure of the construction industry is a financial lease. The purpose of the study is to characterize the civil law regulation of a financial lease. The methodological basis was the technical and legal method that ensures the effectiveness of the analysis of civil law regulation of a financial lease, the adequacy of the assessment of concepts and legal structures. The following results of the study have been obtained: the content of the international financial leasing transaction and the essence of a financial lease in Russia have been determined; particular aspects of the implementation of the UNIDROIT Convention in Russia have been identified. The content of the international financial leasing transaction reflects a threeway process with the participation of the equipment seller, lessor and lessee, who are linked by a supply contract and a lease contract. In Russian legislation, the term «financial lease» is used. The essence of a financial lease reflects both a lease contract with elements of sale in conjunction with the purchase option and the type of secured financing. Particular aspects of the implementation of the UNIDROIT Convention in Russia are due to different terminology and are associated with cross-border leasing. A draft federal law is undergoing a regulatory impact assessment, which provides for the introduction of a financial lease concept. Civil law regulation of leasing relations will ensure the effectiveness of attracting investments in order to improve the digital infrastructure of the construction industry
Arginylation-Dependent Neural Crest Cell Migration Is Essential for Mouse Development
Coordinated cell migration during development is crucial for morphogenesis and largely relies on cells of the neural crest lineage that migrate over long distances to give rise to organs and tissues throughout the body. Recent studies of protein arginylation implicated this poorly understood posttranslational modification in the functioning of actin cytoskeleton and in cell migration in culture. Knockout of arginyltransferase (Ate1) in mice leads to embryonic lethality and severe heart defects that are reminiscent of cell migration–dependent phenotypes seen in other mouse models. To test the hypothesis that arginylation regulates cell migration during morphogenesis, we produced Wnt1-Cre Ate1 conditional knockout mice (Wnt1-Ate1), with Ate1 deletion in the neural crest cells driven by Wnt1 promoter. Wnt1-Ate1 mice die at birth and in the first 2–3 weeks after birth with severe breathing problems and with growth and behavioral retardation. Wnt1-Ate1 pups have prominent defects, including short palate and altered opening to the nasopharynx, and cranial defects that likely contribute to the abnormal breathing and early death. Analysis of neural crest cell movement patterns in situ and cell motility in culture shows an overall delay in the migration of Ate1 knockout cells that is likely regulated by intracellular mechanisms rather than extracellular signaling events. Taken together, our data suggest that arginylation plays a general role in the migration of the neural crest cells in development by regulating the molecular machinery that underlies cell migration through tissues and organs during morphogenesis
An Essential Role of N-Terminal Arginylation in Cardiovascular Development
The enzymatic conjugation of arginine to the N-termini of proteins is a part of the ubiquitin-dependent N-end rule pathway of protein degradation. In mammals, three N-terminal residues—aspartate, glutamate, and cysteine—are substrates for arginylation. The mouseATE1 gene encodes a family of Arg-tRNA-protein transferases (R-transferases) that mediate N-terminal arginylation. We constructed ATE1-lacking mouse strains and found thatATE1 −/− embryos die with defects in heart development and in angiogenic remodeling of the early vascular plexus. Through biochemical analyses, we show that N-terminal cysteine, in contrast to N-terminal aspartate and glutamate, is oxidized before its arginylation by R-transferase, suggesting that the arginylation branch of the N-end rule pathway functions as an oxygen sensor
N-terminal acetylation and arginylation of actin determines the architecture and assembly rate of linear and branched actin networks
The great diversity in actin network architectures and dynamics is exploited by cells to drive fundamental biological processes, including cell migration, endocytosis and cell division. While it is known that this versatility is the result of the many actin-remodeling activities of actin-binding proteins, such as Arp2/3 and Cofilin, recent work also implicates post-translational acetylation or arginylation of the actin N-terminus itself as an equally important regulatory mechanism. However, the molecular mechanisms by which acetylation and arginylation alter the properties of actin are not well understood. Here, we directly compare how processing and modification of the N-terminus of actin affects its intrinsic polymerization dynamics and its remodeling by actin-binding proteins that are essential for cell migration. We find that in comparison to acetylated actin, arginylated actin reduces intrinsic as well as formin-mediated elongation and Arp2/3-mediated nucleation. By contrast, there are no significant differences in Cofilin-mediated severing. Taken together, these results suggest that cells can employ these differently modified actins to regulate actin dynamics. In addition, unprocessed actin with an N-terminal methionine residue shows very different effects on formin-mediated-elongation, Arp2/3-mediated nucleation, and severing by Cofilin. Altogether, this study shows that the nature of the N-terminus of actin can promote distinct actin network dynamics, which can be differentially used by cells to locally finetune actin dynamics at distinct cellular locations, such as at the leading edge
Conditional Tek Promoter-Driven Deletion of Arginyltransferase in the Germ Line Causes Defects in Gametogenesis and Early Embryonic Lethality in Mice
Posttranslational protein arginylation mediated by Ate1 is essential for cardiovascular development, actin cytoskeleton functioning, and cell migration. Ate1 plays a role in the regulation of cytoskeleton and is essential for cardiovascular development and angiogenesis—capillary remodeling driven by in-tissue migration of endothelial cells. To address the role of Ate1 in cytoskeleton-dependent processes and endothelial cell function during development, we produced a conditional mouse knockout with Ate1 deletion driven by Tek endothelial receptor tyrosine kinase promoter expressed in the endothelium and in the germ line. Contrary to expectations, Tek-Ate1 mice were viable and had no visible angiogenesis-related phenotypes; however, these mice showed reproductive defects, with high rates of embryonic lethality in the second generation, at stages much earlier than the complete Ate1 knockout strain. While some of the early lethality originated from the subpopulation of embryos with homozygous Tek-Cre transgene—a problem that has not previously been reported for this commercial mouse strain—a distinct subpopulation of embryos had lethality at early post-implantation stages that could be explained only by a previously unknown defect in gametogenesis originating from Tek-driven Ate1 deletion in premeiotic germs cells. These results demonstrate a novel role of Ate1 in germ cell development
Phosphorylation controls autoinhibition of cytoplasmic linker protein-170
Author Posting. © American Society for Cell Biology, 2010. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 21 (2010): 2661-2673, doi:10.1091/mbc.E09-12-1036.Cytoplasmic linker protein (CLIP)-170 is a microtubule (MT) plus-end-tracking protein that regulates MT dynamics and links MT plus ends to different intracellular structures. We have shown previously that intramolecular association between the N and C termini results in autoinhibition of CLIP-170, thus altering its binding to MTs and the dynactin subunit p150Glued (J. Cell Biol. 2004: 166, 1003–1014). In this study, we demonstrate that conformational changes in CLIP-170 are regulated by phosphorylation that enhances the affinity between the N- and C-terminal domains. By using site-directed mutagenesis and phosphoproteomic analysis, we mapped the phosphorylation sites in the third serine-rich region of CLIP-170. A phosphorylation-deficient mutant of CLIP-170 displays an "open" conformation and a higher binding affinity for growing MT ends and p150Glued as compared with nonmutated protein, whereas a phosphomimetic mutant confined to the "folded back" conformation shows decreased MT association and does not interact with p150Glued. We conclude that phosphorylation regulates CLIP-170 conformational changes resulting in its autoinhibition.This work was supported by National
Institutes of Health grant GM-25062 (to G.G.B.); Netherlands Organization for
Scientific Research grants (to A. A. and N. G.); a Cancer Genomics Centre
grant (to J.v.H.); and Presidential Program of Russian Academy of Sciences
and RFBP grant 05-04-4915 (to E.S.N.)
- …