5 research outputs found

    Damage Prediction in Woven and Non-woven Fabric Composites

    Get PDF
    This chapter presents a step-by-step review on different damage prediction approaches for woven and non-woven fabric composites. First, the characteristics of woven and non-woven fabrics are distinguished one from another, suggesting more complex analyses required for non-woven fabrics. Then, the subsequent sub-sections are geared toward a comparison of different approaches utilized in predicting the mechanical behavior and damage mechanisms of these composites at various material scales including micro, meso, and macro. The merits and demerits of each approach with regard to practicality, accuracy, effectiveness, and characterization expense are discussed. Moreover, using recent experimental evidences, the chapter aims to highlight a number of inherent complexities in the interlaced architecture of woven composites, which may not be precisely taken into account by the damage models originally developed for non-woven and unidirectional composites. Finally, two illustrative examples on the effect of the aforementioned complexities on the mechanical behavior of woven composites are presented in more detail, through some recent works of the authors

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    A coupled non-orthogonal hypoelastic constitutive model for simulation of woven fabrics

    No full text
    Woven fabrics offer a number of advantages compared to their unidirectional counterpart, such as their superior formability and higher out-of-plane stiffness, making this class of materials a decent alternative in leading composite industries such as aerospace and automotive. While their performance merits originate from the interlacing architecture of yarns, this architecture causes some complications toward their reliable analyses; namely the presence of inherent couplings between families of yarns under different deformation modes. Theoretically, the inherent coupling means an arbitrary macro deformation in a given fabric direction can affect the individual effective properties in other directions. This study aims to provide an enhanced understanding of the role of such couplings in the mechanical behavior of woven fabrics. More specifically, the study attempts to identify the underlying multi-scale sources responsible for the coupled mechanical response of woven fabrics. Subsequently, the work introduces a new non-orthogonal hypoelastic constitutive model to reflect the observed coupled deformation mechanisms in woven fabrics. Different modes of coupling are defined and distinguished from the general coupling scheme presented by the Hook’s law. In order to parameterize the model, a comprehensive characterization framework under tension-shear, tension-tension, and shear-tension coupling modes is developed, via a multi-scale analysis. The results show that the first two modes should be closely taken into account in the analyses of fabrics to achieve more accurate predictions of the material response. The attained macro-level characterization results are interpreted at micro and meso levels. Finally, the coupled non-orthogonal model is augmented with a new wrinkling criterion to precisely predict not only the stress-strain response, but also the wrinkling onset of a plain weave in the presence of inherent coupling. The comparison between the experimental and prediction results validates the capabilities of the proposed model. The main practical advantages of including couplings in the analyses of woven fabrics are considered to be (a) more reliable design of the fabric-reinforced composites, (b) better anticipating the shape of deformed fabrics in general, and the wrinkles in particular, and (c) determination of the required tension levels to prevent wrinkling during forming process of fabrics.Applied Science, Faculty ofEngineering, School of (Okanagan)Graduat

    A Mesoscopic Analytical Model to Predict the Onset of Wrinkling in Plain Woven Preforms under Bias Extension Shear Deformation

    No full text
    A mesoscopic analytical model of wrinkling of Plain-Woven Composite Preforms (PWCPs) under the bias extension test is presented, based on a new instability analysis. The analysis is aimed to facilitate a better understanding of the nature of wrinkle formation in woven fabrics caused by large in-plane shear, while it accounts for the effect of fabric and process parameters on the onset of wrinkling. To this end, the mechanism of wrinkle formation in PWCPs in mesoscale is simplified and an equivalent structure composed of bars and different types of springs is proposed, mimicking the behavior of a representative PWCP element at the post-locking state. The parameters of this equivalent structure are derived based on geometric and mechanical characteristics of the PWCP. The principle of minimum total potential energy is employed to formluate the model, and experimental validation is carried out to reveal the effectiveness of the derived wrinkling prediction equation.Applied Science, Faculty ofOther UBCEngineering, School of (Okanagan)Mechanical Engineering, Department ofReviewedFacult
    corecore