17 research outputs found

    Investigation of Dose Distribution in Mixed Neutron-Gamma Field of Boron Neutron Capture Therapy using N-Isopropylacrylamide Gel

    Get PDF
    AbstractGel dosimeters have unique advantages in comparison with other dosimeters. Until now, these gels have been used in different radiotherapy techniques as a reliable dosimetric tool. Because dose distribution measurement is an important factor for appropriate treatment planning in different radiotherapy techniques, in this study, we evaluated the ability of the N-isopropylacrylamide (NIPAM) polymer gel to record the dose distribution resulting from the mixed neutron-gamma field of boron neutron capture therapy (BNCT). In this regard, a head phantom containing NIPAM gel was irradiated using the Tehran Research Reactor BNCT beam line, and then by a magnetic resonance scanner. Eventually, the R2 maps were obtained in different slices of the phantom by analyzing T2-weighted images. The results show that NIPAM gel has a suitable potential for recording three-dimensional dose distribution in mixed neutron-gamma field dosimetry

    DOSE DISTRIBUTION ANALYSIS OF PROTON THERAPY FOR MEDULLOBLASTOMA CANCER WITH PHITS 3.24

    Get PDF
    One of the developments in particle therapy is proton radiation therapy. Meanwhile, a limited number of available proton therapy facilities makes research related to proton therapy difficult. Therefore, there is a need for alternative proton therapy simulations using programs other than those in proton therapy facilities. This research was aimed to simulate medulloblastoma brain cancer which children often experience.The program used in this research was PHITS version 3.24. The human body was modeled with the revised ORNL-MIRD phantom for a 10-year-old child. The therapy scheme was a whole posterior fossa boost of 19.8 Gy. The proton passive scattering was simulated by passing a uniform proton beam through the aperture and compensator with energy variations. The proton pencil beam scanning was simulated with small cylindrical beams with a radius of 0.5 cm, which were adjusted to the planning target volume with layers variations.The total duration to give the prescription dose was 550 seconds with passive scattering and 605 seconds with pencil beam scanning. In passive scattering, the OAR(s) with the most significant percentage of absorbed dose were the skin, cranium, and muscle, i.e., 8.22 ± 0.15 %, 5.51 ± 0.05 % and 1.39 ± 0,04 % respectively to their maximum tolerated dose, while in the pencil beam scanning, the OAR(s) with the most significant percentage of absorbed dose were the skin, cranium, and muscle, i.e., 5.42 ± 0.08 %, 4.43 ± 0.05 % and 0.51 ± 0.05 % respectively to their maximum tolerated dose. Dose distribution in passive scattering was relatively better than in pencil beam scanning in terms of dose homogeneity using dose sampling analysis at some points within the planning target volume

    Evaluation of the medical staff effective dose during boron neutron capture therapy using two high resolution voxel-based whole body phantoms

    No full text
    Because accelerator-based boron neutron capture therapy (BNCT) systems are planned for use in hospitals, entry into the medical room should be controlled as hospitals are generally assumed to be public and safe places. In this paper, computational investigation of the medical staff effective dose during BNCT has been performed in different situations using Monte Carlo N-Particle (MCNP4C) code and two voxel based male phantoms. The results show that the medical staff effective dose is highly dependent on the position of the medical staff. The results also show that the maximum medical staff effective dose in an emergency situation in the presence of a patient is ∼25.5 μSv/s
    corecore