274 research outputs found

    Spiking Neural Networks for Computational Intelligence:An Overview

    Get PDF
    Deep neural networks with rate-based neurons have exhibited tremendous progress in the last decade. However, the same level of progress has not been observed in research on spiking neural networks (SNN), despite their capability to handle temporal data, energy-efficiency and low latency. This could be because the benchmarking techniques for SNNs are based on the methods used for evaluating deep neural networks, which do not provide a clear evaluation of the capabilities of SNNs. Particularly, the benchmarking of SNN approaches with regards to energy efficiency and latency requires realization in suitable hardware, which imposes additional temporal and resource constraints upon ongoing projects. This review aims to provide an overview of the current real-world applications of SNNs and identifies steps to accelerate research involving SNNs in the future

    A Graph-Based Semi-Supervised k Nearest-Neighbor Method for Nonlinear Manifold Distributed Data Classification

    Get PDF
    kk Nearest Neighbors (kkNN) is one of the most widely used supervised learning algorithms to classify Gaussian distributed data, but it does not achieve good results when it is applied to nonlinear manifold distributed data, especially when a very limited amount of labeled samples are available. In this paper, we propose a new graph-based kkNN algorithm which can effectively handle both Gaussian distributed data and nonlinear manifold distributed data. To achieve this goal, we first propose a constrained Tired Random Walk (TRW) by constructing an RR-level nearest-neighbor strengthened tree over the graph, and then compute a TRW matrix for similarity measurement purposes. After this, the nearest neighbors are identified according to the TRW matrix and the class label of a query point is determined by the sum of all the TRW weights of its nearest neighbors. To deal with online situations, we also propose a new algorithm to handle sequential samples based a local neighborhood reconstruction. Comparison experiments are conducted on both synthetic data sets and real-world data sets to demonstrate the validity of the proposed new kkNN algorithm and its improvements to other version of kkNN algorithms. Given the widespread appearance of manifold structures in real-world problems and the popularity of the traditional kkNN algorithm, the proposed manifold version kkNN shows promising potential for classifying manifold-distributed data.Comment: 32 pages, 12 figures, 7 table

    Mapping temporal variables into the NeuCube for improved pattern recognition, predictive modelling, and understanding of stream data.

    Get PDF
    This paper proposes a new method for an optimized mapping of temporal variables, describing a temporal stream data, into the recently proposed NeuCube spiking neural network architecture. This optimized mapping extends the use of the NeuCube, which was initially designed for spatiotemporal brain data, to work on arbitrary stream data and to achieve a better accuracy of temporal pattern recognition, a better and earlier event prediction and a better understanding of complex temporal stream data through visualization of the NeuCube connectivity. The effect of the new mapping is demonstrated on three bench mark problems. The first one is early prediction of patient sleep stage event from temporal physiological data. The second one is pattern recognition of dynamic temporal patterns of traffic in the Bay Area of California and the last one is the Challenge 2012 contest data set. In all cases the use of the proposed mapping leads to an improved accuracy of pattern recognition and event prediction and a better understanding of the data when compared to traditional machine learning techniques or spiking neural network reservoirs with arbitrary mapping of the variables.Comment: Accepted by IEEE TNNL

    Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid system

    Get PDF
    Abstract The paper considers both knowledge acquisition and knowledge interpretation tasks as tightly connected and continuously interacting processes in a contemporary knowledge engineering system. Fuzzy rules are used here as a framework for knowledge representation. An algorithm REFuNN for fuzzy rules extraction from adaptive fuzzy neural networks (FuNN) is proposed. A case study of Iris classification is chosen to illustrate the algorithm. Interpretation of fuzzy rules is possible by using fuzzy neural networks or by using standard fuzzy inference methods. Both approaches are compared in the paper based on the case example. A hybrid environment FuzzyCOPE which facilitates neural network simulation, fuzzy rules extraction from fuzzy neural networks and fuzzy rules interpretation by using different methods for approximate reasoning is briefly described
    • …
    corecore