3,010 research outputs found

    Impact of dead zones on the response of a hadron calorimeter with projective and non-projective geometry

    Full text link
    The aim of this study is to find an optimal mechanical design of the hadronic calorimeter for SiD detector which takes into account engineering as well as physics requirements. The study focuses on the crack effects between two modules for various barrel mechanical design on calorimeter response. The impact of different size of the supporting stringers and dead areas in an active calorimeter layer along the module boundary has been studied for single pions and muons. The emphasis has been put on the comparison of the projective and non-projective barrel geometry for SiD hadronic calorimeter.Comment: 12 pages, 8 figure

    Status of the Micromegas semi-DHCAL

    Full text link
    The activities towards the fabrication and test of a 1 m3 semi-digital hadronic calorime- ter are reviewed. The prototype sampling planes would consist of 1 m2 Micromegas chambers with 1 cm2 granularity and embedded 2 bits readout suitable for PFA calorime- try at an ILC detector. The design of the 1 m2 chamber is presented first, followed by an overview of the basic performance of small prototypes. The basic units composing the 1 m2 chamber are 32 \times 48 cm2 boards with integrated electronics and a micro-mesh. Results of character- ization tests of such boards are shown. Micromegas as a proportional detector is well suited for semi-digital hadronic calorimetry. In order to quantify the gain in perfor- mance when using one or more thresholds, simulation studies are being carried out, some of which will be reported in this contribution

    Proposal of a new Hcal geometry avoiding cracks in the calorimeter

    Get PDF
    The classical geometry of a calorimeter consists most of the time in several modules, whose edges are pointing on the beam axis. Thus, detection discontinuities between two consecutive modules induce cracks in the calorimeter, and consequently a loss of precious information. This paper describes two new possible Hcal geometries avoiding such cracks in the detection. Then it deals with the internal layout and assembly procedure

    Test in a beam of large-area Micromegas chambers for sampling calorimetry

    Full text link
    Application of Micromegas for sampling calorimetry puts specific constraints on the design and performance of this gaseous detector. In particular, uniform and linear response, low noise and stability against high ionisation density deposits are prerequisites to achieving good energy resolution. A Micromegas-based hadronic calorimeter was proposed for an application at a future linear collider experiment and three technologically advanced prototypes of 1Ă—\times1 m2^{2} were constructed. Their merits relative to the above-mentioned criteria are discussed on the basis of measurements performed at the CERN SPS test-beam facility

    Modelling of simple cases in view of active stabilisation for a future linear collider

    Get PDF
    Final focus magnet stabilisation is an important issue when working with nanometre size beams. The present study focuses on mechanical stabilisation. As a first step, the case of a 1m free-fixed aluminium beam placed on a table with active stabilisation has been studied. This work describes three aspects, namely, sensors and actuators to measure and compensate ground motion, mechanical simulations and a feedback loop. Measurements done with low frequency velocity sensors (down to 0.1Hz) in our Annecy lab during office hours show that the displacement RMS on the active table is 1nm at 4Hz compared to 10nm without active stabilisation. Simulations of the dynamic response of the beam have been compared to measurements done with accelerometers placed on the clamping and on the free end of the aluminium beam. The results are in good agreement. We are therefore able to predict by simulation the response of a structure subjected to an external excitation. A first sketch of a feedback loop to compensate specific vibrations has also been developed and allows the simultaneous elimination of several resonance peaks on a reduced-size mock-up. This algorithm will be applied to stabilise a larger mock-up, leading to more realistic experimental conditions. In future tests, the active table will globally stabilise in a range of frequencies from 0.5Hz to 50Hz whereas the feedback loop will compensate single strong resonances

    Work Plans of the EUROTeV Technical Work Packages for 2005-2007

    Get PDF
    This report summarises the status of the work in the seven scientific Work Packages of EUROTeV as presented during the ILC-European Regional Meeting at Royal Holloway in June 2005. The purpose of the meeting was to monitor the progress and to contrast the developments inside EUROTeV with the worldwide developments of the GDE. The presentations of the entire meeting are available from http://www.pp.rhul.ac.uk/workshop/

    Resistive micromegas for sampling calorimetry

    Get PDF
    MicromegasInternational audienceMicromegas is an attractive option for a gaseous sampling calorimeter. It delivers proportional and fast signals, achieves high efficiency to minimum ionising particles with a compact design and shows well-uniform performance over meter-square areas. The current R&D focuses on large- size spark-protected Micromegas with integrated front-end electronics. It targets an application at future linear colliders (LC) and possible upgrades of LHC experiments for the running at high luminosity. In the later case, occasional sparking should be suppressed to avoid dead-time and technical solutions using resistive coatings are investigated. Small prototypes of resistive and non-resistive Micromegas were constructed and tested in a beam at DESY. Results are reported with emphasis on the impact of the resistive layer on the detector performance

    MICROMEGAS chambers for hadronic calorimetry at a future linear collider

    Full text link
    Prototypes of MICROMEGAS chambers, using bulk technology and analog readout, with 1x1cm2 readout segmentation have been built and tested. Measurements in Ar/iC4H10 (95/5) and Ar/CO2 (80/20) are reported. The dependency of the prototypes gas gain versus pressure, gas temperature and amplification gap thickness variations has been measured with an 55Fe source and a method for temperature and pressure correction of data is presented. A stack of four chambers has been tested in 200GeV/c and 7GeV/c muon and pion beams respectively. Measurements of response uniformity, detection efficiency and hit multiplicity are reported. A bulk MICROMEGAS prototype with embedded digital readout electronics has been assembled and tested. The chamber layout and first results are presented

    Large Area Micromegas Chambers with Embedded Front-end Electronics for Hadron Calorimetry

    Get PDF
    AbstractMicromegas (Micro-mesh gaseous structure) is an attractive technology for applications in particle physics experiments (TPC, calorimeters, muon systems, etc.). The most important results of an extensive R&D program aiming to develop a new generation of a fine-grained hadron calorimeter with low power consumption digital readout using Micromegas chambers as an active element are presented. In 2010, the first large scale prototype of Micromegas chamber with almost 8000 readout channels has been built and tested with high energy particle beams at CERN. The fundamental results, such as detection effciency, hit multiplicity, gain stability, response uniformity and effect of power pulsing of the detector front-end electronics are reported. Eventually, the development and test of the second generation of the large scale prototype with new readout electronics and some important improvements of its mechanical design is described and the prospective towards the construction of a technological prototype of a 4.5 λ deep digital calorimeter for a future linear collider is also given

    Recent results of Micromegas sDHCAL with a new readout chip

    Full text link
    Calorimetry at future linear colliders could be based on a particle flow approach where granularity is the key to high jet energy resolution. Among different technologies, Micromegas chambers with 1 cm2 pad segmentation are studied for the active medium of a hadronic calorimeter. A chamber of 1 m2 with 9216 channels read out by a low noise front-end ASIC called MICROROC has recently been constructed and tested. Chamber design, ASIC circuitry and preliminary test beam results are reported
    • …
    corecore